Adaptive spatial partitioning for multidimensional data streams

被引:14
|
作者
Hershberger, John
Shrivastava, Nisheeth
Suri, Subhash
Toth, Csaba D.
机构
[1] Mentor Graph Corp, Wilsonville, OR 97070 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
multidimensional data stream; summarization; heavy hitters; range query;
D O I
10.1007/s00453-006-0070-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a space-efficient scheme for summarizing multidimensional data streams. Our sketch can be used to solve spatial versions of several classical data stream queries efficiently. For instance, we can track epsilon-hot spots, which are congruent boxes containing at least an epsilon fraction of the stream, and maintain hierarchical heavy hitters in d dimensions. Our sketch can also be viewed as a multidimensional generalization of the epsilon-approximate quantile summary. The space complexity of our scheme is O((1/epsilon) log R) if the points lie in the domain [0, R](d), where d is assumed to be a constant. The scheme extends to the sliding window model with a log (epsilon n) factor increase in space, where n is the size of the sliding window. Our sketch can also be used to answer epsilon-approximate rectangular range queries over a stream of d-dimensional points.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 50 条
  • [21] Toward Anonymizing IoT Data Streams via Partitioning
    Otgonbayar, Ankhbayar
    Pervez, Zeeshan
    Dahal, Keshav
    [J]. PROCEEDINGS 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS 2016), 2016, : 331 - 336
  • [22] BIG DATA AND MULTIDIMENSIONAL ANALYSES WITH SPATIAL DATA
    Otrzasek, Jakub
    Mueller, Wojciech
    Koszela, Krzysztof
    Weres, Jerzy
    Przybyl, Jacek
    [J]. GEOCONFERENCE ON INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I, 2014, : 65 - 71
  • [23] Mining multidimensional sequential patterns over data streams
    Raissi, Chedy
    Plantevit, Marc
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2008, 5182 : 263 - 272
  • [24] An Adaptive Framework for Clustering Data Streams
    Chandrika
    Kumar, K. R. Ananda
    [J]. ADVANCES IN COMPUTING AND COMMUNICATIONS, PT I, 2011, 190 : 704 - +
  • [25] λ-Perceptron: An adaptive classifier for data streams
    Pavlidis, N. G.
    Tasoulis, D. K.
    Adams, N. M.
    Hand, D. J.
    [J]. PATTERN RECOGNITION, 2011, 44 (01) : 78 - 96
  • [26] Clustering Data Streams with Adaptive Forgetting
    Nutakki, Gopi Chand
    Nasraoui, Olfa
    [J]. 2017 IEEE 6TH INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS 2017), 2017, : 494 - 497
  • [27] Adaptive XGBoost for Evolving Data Streams
    Montiel, Jacob
    Mitchell, Rory
    Frank, Eibe
    Pfahringer, Bernhard
    Abdessalem, Talel
    Bifet, Albert
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [28] Density estimation for spatial data streams
    Procopiuc, CM
    Procopiuc, O
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2005, 3633 : 109 - 126
  • [29] Differentially Private Data Release through Multidimensional Partitioning
    Xiao, Yonghui
    Xiong, Li
    Yuan, Chun
    [J]. SECURE DATA MANAGEMENT, 2010, 6358 : 150 - +
  • [30] Adaptive data partitioning for ambient multimedia
    Hu, XP
    Marculescu, R
    [J]. 41ST DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2004, 2004, : 562 - 565