Adaptive spatial partitioning for multidimensional data streams

被引:14
|
作者
Hershberger, John
Shrivastava, Nisheeth
Suri, Subhash
Toth, Csaba D.
机构
[1] Mentor Graph Corp, Wilsonville, OR 97070 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
multidimensional data stream; summarization; heavy hitters; range query;
D O I
10.1007/s00453-006-0070-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a space-efficient scheme for summarizing multidimensional data streams. Our sketch can be used to solve spatial versions of several classical data stream queries efficiently. For instance, we can track epsilon-hot spots, which are congruent boxes containing at least an epsilon fraction of the stream, and maintain hierarchical heavy hitters in d dimensions. Our sketch can also be viewed as a multidimensional generalization of the epsilon-approximate quantile summary. The space complexity of our scheme is O((1/epsilon) log R) if the points lie in the domain [0, R](d), where d is assumed to be a constant. The scheme extends to the sliding window model with a log (epsilon n) factor increase in space, where n is the size of the sliding window. Our sketch can also be used to answer epsilon-approximate rectangular range queries over a stream of d-dimensional points.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 50 条
  • [1] Adaptive spatial partitioning for multidimensional data streams
    Hershberger, J
    Shrivastava, N
    Suri, S
    Tóth, CD
    [J]. ALGORITHMS AND COMPUTATION, 2004, 3341 : 522 - 533
  • [2] Adaptive Spatial Partitioning for Multidimensional Data Streams
    John Hershberger
    Nisheeth Shrivastava
    Subhash Suri
    Csaba D. Toth
    [J]. Algorithmica, 2006, 46 : 97 - 117
  • [3] Adaptive Partitioning and Order-Preserved Merging of Data Streams
    Pohl, Constantin
    Sattler, Kai-Uwe
    [J]. ADVANCES IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2019, 2019, 11695 : 267 - 282
  • [4] MULTIDIMENSIONAL BINARY PARTITIONS - DISTRIBUTED DATA-STRUCTURES FOR SPATIAL PARTITIONING
    CYBENKO, G
    ALLEN, TG
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1991, 54 (06) : 1335 - 1352
  • [5] Systolic opportunities for multidimensional data streams
    Chai, SM
    Wills, DS
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2002, 13 (04) : 388 - 398
  • [6] A spatial-adaptive sampling procedure for online monitoring of big data streams
    Wang, Andi
    Xian, Xiaochen
    Tsung, Fugee
    Liu, Kaibo
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2018, 50 (04) : 329 - 343
  • [7] Towards an Adaptive Multidimensional Partitioning for Accelerating Spark SQL
    Benkrid, Soumia
    Bellatreche, Ladjel
    Mestoui, Yacine
    Ordonez, Carlos
    [J]. BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY (DAWAK 2021), 2021, 12925 : 27 - 38
  • [8] A statistical μ-partitioning method for clustering data streams
    Park, NH
    Lee, WS
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 292 - 299
  • [9] Dalton: Learned Partitioning for Distributed Data Streams
    Zapridou, Eleni
    Mytilinis, Ioannis
    Ailamaki, Anastasia
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (03): : 491 - 504
  • [10] Panakos: Chasing the Tails for Multidimensional Data Streams
    Zhao, Fuheng
    Khan, Punnal Ismail
    Agrawal, Divyakant
    El Abbadi, Amr
    Gupta, Arpit
    Liu, Zaoxing
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (06): : 1291 - 1304