A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack in Electric Vehicles

被引:205
|
作者
Xiong, Rui [1 ]
Yu, Quanqing [1 ]
Shen, Weixiang [2 ]
Lin, Cheng [1 ]
Sun, Fengchun [1 ]
机构
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Sch Mech Engn, Dept Vehicle Engn, Beijing 100081, Peoples R China
[2] Swinburne Univ Technol, Fac Sci Engn & Technol, Melbourne, Vic 3122, Australia
关键词
Capacity estimation; lithium-ion (Li-ion) battery pack; sensor fault detection and isolation; sensor fault diagnosis; state of charge (SOC); STATE-OF-CHARGE; UNSCENTED KALMAN FILTER; SHORT-CIRCUIT DETECTION; MANAGEMENT;
D O I
10.1109/TPEL.2019.2893622
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In electric vehicles, a battery management system highly relies on the measured current, voltage, and temperature to accurately estimate state of charge (SOC) and state of health. Thus, the normal operation of current, voltage, and temperature sensors is of great importance to protect batteries from running outside their safe operating area. In this paper, a simple and effective model-based sensor fault diagnosis scheme is developed to detect and isolate the fault of a current or voltage sensor for a series-connected lithium-ion battery pack. The difference between the true SOC and estimated SOC of each cell in the pack is defined as a residual to determine the occurrence of the fault. The true SOC is calculated by the coulomb counting method and the estimated SOC is obtained by the recursive least squares and unscented Kalman filter joint estimation method. In addition, the difference between the capacity used in SOC estimation and the estimated capacity based on the ratio of the accumulated charge to the SOC difference at two nonadjacent sampling times can also he defined as a residual for fault diagnosis. The temperature sensor which is assumed to be fault-free is used to distinguish the fault of a current or voltage sensor from the fault of a battery cell. Then, the faulty current or voltage sensor can be isolated by comparing the residual and the predefined threshold of each cell in the pack. The experimental and simulation results validate the effectiveness of the proposed sensor fault diagnosis scheme.
引用
收藏
页码:9709 / 9718
页数:10
相关论文
共 50 条
  • [31] A Hybrid Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles
    Jiang, Jiuchun
    Cong, Xinwei
    Li, Shuowei
    Zhang, Caiping
    Zhang, Weige
    Jiang, Yan
    IEEE ACCESS, 2021, 9 : 19175 - 19186
  • [32] A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles
    Cong, Xinwei
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Jiang, Yan
    Zhang, Linjing
    ENERGIES, 2021, 14 (05)
  • [33] Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm
    Jiang, Jiuchun
    Li, Taiyu
    Chang, Chun
    Yang, Chen
    Liao, Li
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [34] Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles
    Jiang F.
    Zhang F.
    Xu C.
    Li C.
    Wang S.
    Ren Y.
    Feng X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 23 - 31
  • [35] Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles
    Xiong, Rui
    Sun, Fengchun
    Gong, Xianzhi
    He, Hongwen
    JOURNAL OF POWER SOURCES, 2013, 242 : 699 - 713
  • [36] Calibration Optimization Methodology for Lithium-Ion Battery Pack Model for Electric Vehicles in Mining Applications
    Astaneh, Majid
    Andric, Jelena
    Lofdahl, Lennart
    Maggiolo, Dario
    Stopp, Peter
    Moghaddam, Mazyar
    Chapuis, Michel
    Strom, Henrik
    ENERGIES, 2020, 13 (14)
  • [37] Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles
    Mathew, M.
    Kong, Q. H.
    McGrory, J.
    Fowler, M.
    JOURNAL OF POWER SOURCES, 2017, 349 : 94 - 104
  • [38] Circularity of Lithium-Ion Battery Materials in Electric Vehicles
    Dunn, Jessica
    Slattery, Margaret
    Kendall, Alissa
    Ambrose, Hanjiro
    Shen, Shuhan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (08) : 5189 - 5198
  • [39] Multifunctional structural lithium-ion battery for electric vehicles
    Zhang, Yancheng
    Ma, Jun
    Singh, Abhendra K.
    Cao, Lei
    Seo, Jiho
    Rahn, Christopher D.
    Bakis, Charles E.
    Hickner, Michael A.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (12) : 1603 - 1613
  • [40] Modeling for Lithium-Ion Battery used in Electric Vehicles
    Xiong, Rui
    He, Hongwen
    Guo, Hongqiang
    Ding, Yin
    CEIS 2011, 2011, 15