BAYESIAN JOINT MODELING OF LONGITUDINAL MEASUREMENTS AND TIME-TO-EVENT DATA USING ROBUST DISTRIBUTIONS

被引:18
|
作者
Baghfalaki, T. [1 ]
Ganjali, M. [1 ]
Hashemi, R. [2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Fac Math Sci, Tehran 1983963113, Iran
[2] Razi Univ, Dept Stat, Kermanshah, Iran
关键词
Bayesian approach; Joint models; Longitudinal data; Markov-chain Monte Carlo; Normal/independent distributions; Time-to-event data; SURVIVAL-DATA; FAILURE TIME; SCALE;
D O I
10.1080/10543406.2014.903657
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Distributional assumptions of most of the existing methods for joint modeling of longitudinal measurements and time-to-event data cannot allow incorporation of outlier robustness. In this article, we develop and implement a joint modeling of longitudinal and time-to-event data using some powerful distributions for robust analyzing that are known as normal/ independent distributions. These distributions include univariate and multivariate versions of the Student's t, the slash, and the contaminated normal distributions. The proposed model implements a linear mixed effects model under a normal/independent distribution assumption for both random effects and residuals of the longitudinal process. For the time-to-event process a parametric proportional hazard model with a Weibull baseline hazard is used. Also, a Bayesian approach using the Markov-chain Monte Carlo method is adopted for parameter estimation. Some simulation studies are performed to investigate the performance of the proposed method under presence and absence of outliers. Also, the proposed methods are applied for analyzing a real AIDS clinical trial, with the aim of comparing the efficiency and safety of two antiretroviral drugs, where CD4 count measurements are gathered as longitudinal outcomes. In these data, time to death or dropout is considered as the interesting time-to-event outcome variable. Different model structures are developed for analyzing these data sets, where model selection is performed by the deviance information criterion (DIC), expected Akaike information criterion (EAIC), and expected Bayesian information criterion (EBIC).
引用
收藏
页码:834 / 855
页数:22
相关论文
共 50 条
  • [21] Modeling biomarker variability in joint analysis of longitudinal and time-to-event data
    Wang, Chunyu
    Shen, Jiaming
    Charalambous, Christiana
    Pan, Jianxin
    [J]. BIOSTATISTICS, 2023, 25 (02) : 577 - 596
  • [22] A REVIEW ON JOINT MODELLING OF LONGITUDINAL MEASUREMENTS AND TIME-TO-EVENT
    Sousa, Ines
    [J]. REVSTAT-STATISTICAL JOURNAL, 2011, 9 (01) : 57 - +
  • [23] An Overview of Joint Modeling of Time-to-Event and Longitudinal Outcomes
    Papageorgiou, Grigorios
    Mauff, Katya
    Tomer, Anirudh
    Rizopoulos, Dimitris
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 223 - 240
  • [24] Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data
    Jiawei Xu
    Matthew A. Psioda
    Joseph G. Ibrahim
    [J]. Lifetime Data Analysis, 2023, 29 : 213 - 233
  • [25] Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data
    Xu, Jiawei
    Psioda, Matthew A.
    Ibrahim, Joseph G.
    [J]. LIFETIME DATA ANALYSIS, 2023, 29 (01) : 213 - 233
  • [26] A BAYESIAN APPROACH FOR JOINT MODELING OF SKEW-NORMAL LONGITUDINAL MEASUREMENTS AND TIME TO EVENT DATA
    Baghfalaki, Taban
    Ganjali, Mojtaba
    [J]. REVSTAT-STATISTICAL JOURNAL, 2015, 13 (02) : 169 - 191
  • [27] Bayesian Change-Point Joint Models for Multivariate Longitudinal and Time-to-Event Data
    Chen, Jiaqing
    Huang, Yangxin
    Tang, Nian-Sheng
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2022, 14 (02): : 227 - 241
  • [28] Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    [J]. STATISTICAL MODELLING, 2021, 21 (1-2) : 161 - 181
  • [29] Boosting joint models for longitudinal and time-to-event data
    Waldmann, Elisabeth
    Taylor-Robinson, David
    Klein, Nadja
    Kneib, Thomas
    Pressler, Tania
    Schmid, Matthias
    Mayr, Andreas
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1104 - 1121
  • [30] AN APPROACH FOR JOINTLY MODELING MULTIVARIATE LONGITUDINAL MEASUREMENTS AND DISCRETE TIME-TO-EVENT DATA
    Albert, Paul S.
    Shih, Joanna H.
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (03): : 1517 - 1532