BOUNDEDNESS CRITERION FOR BILINEAR FOURIER MULTIPLIER OPERATORS

被引:9
|
作者
Miyachi, Akihiko [1 ]
Tomita, Naohito [2 ]
机构
[1] Tokyo Womans Christian Univ, Dept Math, Suginami Ku, Tokyo 1678585, Japan
[2] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Bilinear Fourier multipliers; Hormander multiplier theorem; Littlewood-Paley theory;
D O I
10.2748/tmj/1396875662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bilinear Fourier multiplier operators corresponding to multipliers that are singular at the origin are considered. New criterions on such multipliers to assure the boundedness of the corresponding operators from L-P x L-q to L-r, 1/p + 1/q = 1/r, are given in the range 1 < p, q <= infinity, 2/3 < r < infinity.
引用
收藏
页码:55 / 76
页数:22
相关论文
共 50 条
  • [1] THE BOUNDEDNESS OF BILINEAR FOURIER MULTIPLIER OPERATORS IN BESOV SPACES WITH VARIABLE EXPONENTS
    Liu, Y.
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 484 - 498
  • [2] The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents
    Y. Liu
    [J]. Acta Mathematica Hungarica, 2021, 164 : 484 - 498
  • [3] WEIGHTED NORM INEQUALITIES FOR BILINEAR FOURIER MULTIPLIER OPERATORS
    Hu, Guoen
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1409 - 1425
  • [4] BILINEAR FOURIER MULTIPLIER OPERATORS ON VARIABLE TRIEBEL SPACES
    Liu, Yin
    Zhao, Jiman
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 677 - 690
  • [5] Weighted Estimates for Bilinear Fourier Multiplier Operators with Multiple Weights
    Hu, Guoen
    Wang, Zhidan
    Xue, Qingying
    Yabuta, Kozo
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 2152 - 2171
  • [6] Weighted Estimates for Bilinear Fourier Multiplier Operators with Multiple Weights
    Guoen Hu
    Zhidan Wang
    Qingying Xue
    Kôzô Yabuta
    [J]. The Journal of Geometric Analysis, 2021, 31 : 2152 - 2171
  • [7] ON THE BILINEAR SQUARE FOURIER MULTIPLIER OPERATORS ASSOCIATED WITH gλ* FUNCTION
    Li, Zhengyang
    Xue, Qingying
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 123 - 152
  • [8] On the bilinear square Fourier multiplier operators and related multilinear square functions
    SI ZengYan
    XUE QingYing
    YABUTA Kz
    [J]. Science China Mathematics, 2017, 60 (08) : 1477 - 1502
  • [9] On the bilinear square Fourier multiplier operators and related multilinear square functions
    Si, ZengYan
    Xue, QingYing
    Yabuta, Kozo
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1477 - 1502
  • [10] On the bilinear square Fourier multiplier operators and related multilinear square functions
    ZengYan Si
    QingYing Xue
    Kôzô Yabuta
    [J]. Science China Mathematics, 2017, 60 : 1477 - 1502