BOUNDEDNESS CRITERION FOR BILINEAR FOURIER MULTIPLIER OPERATORS

被引:9
|
作者
Miyachi, Akihiko [1 ]
Tomita, Naohito [2 ]
机构
[1] Tokyo Womans Christian Univ, Dept Math, Suginami Ku, Tokyo 1678585, Japan
[2] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Bilinear Fourier multipliers; Hormander multiplier theorem; Littlewood-Paley theory;
D O I
10.2748/tmj/1396875662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bilinear Fourier multiplier operators corresponding to multipliers that are singular at the origin are considered. New criterions on such multipliers to assure the boundedness of the corresponding operators from L-P x L-q to L-r, 1/p + 1/q = 1/r, are given in the range 1 < p, q <= infinity, 2/3 < r < infinity.
引用
收藏
页码:55 / 76
页数:22
相关论文
共 50 条
  • [21] The Marcinkiewicz multiplier condition for bilinear operators
    Grafakos, L
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2001, 146 (02) : 115 - 156
  • [22] BILINEAR FOURIER INTEGRAL OPERATOR AND ITS BOUNDEDNESS
    Alimohammady, M.
    Fattahi, F.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2011, 2 (01): : 97 - 102
  • [23] Bilinear Fourier integral operators
    Loukas Grafakos
    Marco M. Peloso
    [J]. Journal of Pseudo-Differential Operators and Applications, 2010, 1 : 161 - 182
  • [24] Bilinear Fourier integral operators
    Grafakos, Loukas
    Peloso, Marco M.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2010, 1 (02) : 161 - 182
  • [25] The boundedness of bilinear Fourier integral operators on L2 x L2
    Aid, Omar Farouk
    Senoussaoui, Abderrahmane
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1565 - 1575
  • [26] ON THE BOUNDEDNESS OF CERTAIN BILINEAR OSCILLATORY INTEGRAL OPERATORS
    Rodriguez-Lopez, Salvador
    Rule, David
    Staubach, Wolfgang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 6971 - 6995
  • [27] Carleman estimates and boundedness of associated multiplier operators
    Jeong, Eunhee
    Kwon, Yehyun
    Lee, Sanghyuk
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (04) : 774 - 796
  • [28] Bilinear Fourier Multiplier Operator on Morrey Spaces
    Yulan JIAO
    [J]. Journal of Mathematical Research with Applications, 2014, 34 (06) : 703 - 712
  • [29] COMPACTNESS OF THE COMMUTATOR OF BILINEAR FOURIER MULTIPLIER OPERATOR
    Hu, Guoen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 661 - 675
  • [30] A BOUNDEDNESS CRITERION FOR GENERAL MAXIMAL OPERATORS
    Lerner, Andrei K.
    Ombrosi, Sheldy
    [J]. PUBLICACIONS MATEMATIQUES, 2010, 54 (01) : 53 - 71