Bilinear Fourier integral operators

被引:0
|
作者
Loukas Grafakos
Marco M. Peloso
机构
[1] University of Missouri,Department of Mathematics
[2] Università degli Studi di Milano,Dipartimento di Matematica
关键词
Multilinear operators; Fourier integral operators; 42B99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(x,y_1,y_2,\xi_1,\xi_2)}$$\end{document} which is jointly homogeneous in the phase variables (ξ1, ξ2). For symbols of order zero supported away from the axes and the antidiagonal, we show that boundedness holds in the local-L2 case. Stronger conclusions are obtained for more restricted classes of symbols and phases.
引用
收藏
页码:161 / 182
页数:21
相关论文
共 50 条
  • [1] Bilinear Fourier integral operators
    Grafakos, Loukas
    Peloso, Marco M.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2010, 1 (02) : 161 - 182
  • [2] Lp Estimates for Bi-parameter and Bilinear Fourier Integral Operators
    Qing HONG
    Lu ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2017, 33 (02) : 165 - 186
  • [3] A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators
    Rodriguez-Lopez, Salvador
    Rule, David
    Staubach, Wolfgang
    [J]. ADVANCES IN MATHEMATICS, 2014, 264 : 1 - 54
  • [4] Lp estimates for bi-parameter and bilinear Fourier integral operators
    Hong, Qing
    Zhang, Lu
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (02) : 165 - 186
  • [5] Lp estimates for bi-parameter and bilinear Fourier integral operators
    Qing Hong
    Lu Zhang
    [J]. Acta Mathematica Sinica, English Series, 2017, 33 : 165 - 186
  • [6] BILINEAR FOURIER INTEGRAL OPERATORS WITH ROUGH HORMANDER CLASS ON THE PRODUCT OF HARDY SPACES
    Zhu, Xiangrong
    Li, Wenjuan
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024,
  • [7] INTEGRAL RESTRICTION FOR BILINEAR OPERATORS
    Zhao, Weiren
    Wang, Meng
    Zhao, Guoping
    [J]. PUBLICACIONS MATEMATIQUES, 2016, 60 (02) : 485 - 500
  • [8] Bilinear integral operators with certain hypersingularities
    Heo, Yaryong
    Hong, Sunggeum
    Yang, Chan Woo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (01) : 628 - 661
  • [9] The boundedness of bilinear Fourier integral operators on L2 x L2
    Aid, Omar Farouk
    Senoussaoui, Abderrahmane
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1565 - 1575
  • [10] BOUNDEDNESS CRITERION FOR BILINEAR FOURIER MULTIPLIER OPERATORS
    Miyachi, Akihiko
    Tomita, Naohito
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (01) : 55 - 76