Bilinear Fourier integral operators

被引:0
|
作者
Loukas Grafakos
Marco M. Peloso
机构
[1] University of Missouri,Department of Mathematics
[2] Università degli Studi di Milano,Dipartimento di Matematica
关键词
Multilinear operators; Fourier integral operators; 42B99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi(x,y_1,y_2,\xi_1,\xi_2)}$$\end{document} which is jointly homogeneous in the phase variables (ξ1, ξ2). For symbols of order zero supported away from the axes and the antidiagonal, we show that boundedness holds in the local-L2 case. Stronger conclusions are obtained for more restricted classes of symbols and phases.
引用
收藏
页码:161 / 182
页数:21
相关论文
共 50 条
  • [31] BILINEAR DECOMPOSITIONS AND COMMUTATORS OF SINGULAR INTEGRAL OPERATORS
    Luong Dang Ky
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (06) : 2931 - 2958
  • [32] WEIGHTED NORM INEQUALITIES FOR BILINEAR FOURIER MULTIPLIER OPERATORS
    Hu, Guoen
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1409 - 1425
  • [33] BILINEAR FOURIER MULTIPLIER OPERATORS ON VARIABLE TRIEBEL SPACES
    Liu, Yin
    Zhao, Jiman
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 677 - 690
  • [34] Fourier Integral Operators in SG classes: Classical operators
    Coriasco, S
    Panarese, P
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 81 - 91
  • [35] Basic calculus of Fourier integral operators and pseudodifferential operators
    不详
    CLASSICAL MICROLOCAL ANALYSIS IN THE SPACE OF HYPERFUNCTIONS, 2000, 1737 : 41 - 114
  • [36] FOURIER INTEGRAL OPERATORS .2.
    DUISTERMAAT, JJ
    HORMANDER, L
    ACTA MATHEMATICA UPPSALA, 1972, 128 (3-4): : 183 - +
  • [37] Fourier integral operators with cusp singularities
    Greenleaf, A
    Seeger, A
    AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) : 1077 - 1119
  • [38] Fast computation of Fourier integral operators
    Candes, Emmanuel
    Demanet, Laurent
    Ying, Lexing
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06): : 2464 - 2493
  • [39] On the global boundedness of Fourier integral operators
    Elena Cordero
    Fabio Nicola
    Luigi Rodino
    Annals of Global Analysis and Geometry, 2010, 38 : 373 - 398
  • [40] Computing Fourier integral operators with caustics
    Caday, Peter
    INVERSE PROBLEMS, 2016, 32 (12)