ON THE BILINEAR SQUARE FOURIER MULTIPLIER OPERATORS ASSOCIATED WITH gλ* FUNCTION

被引:1
|
作者
Li, Zhengyang [1 ]
Xue, Qingying [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
关键词
WEIGHTED NORM INEQUALITIES; LITTLEWOOD-PALEY; SINGULAR-INTEGRALS; COMMUTATORS; L2;
D O I
10.1017/nmj.2018.30
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper will be devoted to study a class of bilinear squarefunction Fourier multiplier operator associated with a symbol m defined by L-lambda,L-m (f(1),f(2))(x) =(integral integral(R+n+1) )t/vertical bar x - z vertical bar + t)n(lambda) x vertical bar integral(2)((Rn)) e(2 pi ix.(xi 1+xi 2))m(t xi 1,t xi 2) (f) over cap (1) (xi(1))(f) over cap (2), (xi(2)) d xi(1) d xi(2)vertical bar(2) dz dt / t(n+1))(1/2). A basic fact about L-lambda,L-m is that it is closely associated with the multilinear Littlewood{Paley g(lambda)* function. In this paper we first investigate the boundedness of L-lambda,L-m on products of weighted Lebesgue spaces. Then, the weighted endpoint L log L type estimate and strong estimate for the commutators of L-lambda,L-m will be demonstrated.
引用
收藏
页码:123 / 152
页数:30
相关论文
共 50 条
  • [1] On the bilinear square Fourier multiplier operators and related multilinear square functions
    SI ZengYan
    XUE QingYing
    YABUTA Kz
    [J]. Science China Mathematics, 2017, 60 (08) : 1477 - 1502
  • [2] On the bilinear square Fourier multiplier operators and related multilinear square functions
    Si, ZengYan
    Xue, QingYing
    Yabuta, Kozo
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1477 - 1502
  • [3] On the bilinear square Fourier multiplier operators and related multilinear square functions
    ZengYan Si
    QingYing Xue
    Kôzô Yabuta
    [J]. Science China Mathematics, 2017, 60 : 1477 - 1502
  • [4] BOUNDEDNESS CRITERION FOR BILINEAR FOURIER MULTIPLIER OPERATORS
    Miyachi, Akihiko
    Tomita, Naohito
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (01) : 55 - 76
  • [5] WEIGHTED NORM INEQUALITIES FOR BILINEAR FOURIER MULTIPLIER OPERATORS
    Hu, Guoen
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1409 - 1425
  • [6] BILINEAR FOURIER MULTIPLIER OPERATORS ON VARIABLE TRIEBEL SPACES
    Liu, Yin
    Zhao, Jiman
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 677 - 690
  • [7] Weighted Estimates for Bilinear Fourier Multiplier Operators with Multiple Weights
    Hu, Guoen
    Wang, Zhidan
    Xue, Qingying
    Yabuta, Kozo
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 2152 - 2171
  • [8] Weighted Estimates for Bilinear Fourier Multiplier Operators with Multiple Weights
    Guoen Hu
    Zhidan Wang
    Qingying Xue
    Kôzô Yabuta
    [J]. The Journal of Geometric Analysis, 2021, 31 : 2152 - 2171
  • [9] The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents
    Y. Liu
    [J]. Acta Mathematica Hungarica, 2021, 164 : 484 - 498
  • [10] THE BOUNDEDNESS OF BILINEAR FOURIER MULTIPLIER OPERATORS IN BESOV SPACES WITH VARIABLE EXPONENTS
    Liu, Y.
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 484 - 498