On the bilinear square Fourier multiplier operators and related multilinear square functions

被引:0
|
作者
ZengYan Si
QingYing Xue
Kôzô Yabuta
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
[2] Beijing Normal University,School of Mathematical Sciences
[3] Laboratory of Mathematics and Complex Systems,Research Center for Mathematical Sciences
[4] Ministry of Education,undefined
[5] Kwansei Gakuin University,undefined
来源
Science China Mathematics | 2017年 / 60卷
关键词
multilinear square functions; Fourier multiplier operator; multiple weights; commutators; 42B25; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
Let n > 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m, which is defined by Tm(f1,f2)(x)=(∫0∞|∫(ℝn)2e2πix⋅(ξ1+ξ2)m(tξ1,tξ2)f^1(ξ1)f^2(ξ2)dξ1dξ2|2dtt)12.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_m}\left( {{f_1},{f_2}} \right)\left( x \right) = {\left( {\int_0^\infty {{{\left| {\int_{{{\left( {{\mathbb{R}^n}} \right)}^2}} {{e^{2\pi ix \cdot \left( {{\xi _1} + {\xi _2}} \right)}}m\left( {t{\xi _1},t{\xi _2}} \right){{\hat f}_1}\left( {{\xi _1}} \right){{\hat f}_2}\left( {{\xi _2}} \right)d{\xi _1}d{\xi _2}} } \right|}^2}\frac{{dt}}{t}} } \right)^{\frac{1}{2}}}.$$\end{document} Let s be an integer with s ∈ [n + 1, 2n] and p0 be a number satisfying 2n/s ≤ p0 ≤ 2. Suppose that νω→=Πi=12ωip/pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nu _{\vec \omega }} = \Pi _{i = 1}^2\omega _i^{p/{p_i}}$$\end{document} and each ωi is a nonnegative function on Rn. In this paper, we show that under some condition on m, Tm is bounded from Lp1(ω1) × Lp2(ω2) to Lp(νω→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^p}\left( {{\nu _{\vec \omega }}} \right)$$\end{document} if p0 < p1, p2 < ∞ with 1/p = 1/p1 + 1/p2. Moreover, if p0 > 2n/s and p1 = p0 or p2 = p0, then Tm is bounded from Lp1(ω1) × Lp2(ω2) to Lp,∞(νω→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{p,\infty }}\left( {{\nu _{\vec \omega }}} \right)$$\end{document}. The weighted end-point L log L type estimate and strong estimate for the commutators of Tm are also given. These were done by considering the boundedness of some related multilinear square functions associated with mild regularity kernels and essentially improving some basic lemmas which have been used before.
引用
收藏
页码:1477 / 1502
页数:25
相关论文
共 50 条
  • [1] On the bilinear square Fourier multiplier operators and related multilinear square functions
    SI ZengYan
    XUE QingYing
    YABUTA Kz
    [J]. Science China Mathematics, 2017, 60 (08) : 1477 - 1502
  • [2] On the bilinear square Fourier multiplier operators and related multilinear square functions
    Si, ZengYan
    Xue, QingYing
    Yabuta, Kozo
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1477 - 1502
  • [3] ON THE BILINEAR SQUARE FOURIER MULTIPLIER OPERATORS ASSOCIATED WITH gλ* FUNCTION
    Li, Zhengyang
    Xue, Qingying
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 123 - 152
  • [4] Multilinear square operators meet new weight functions
    Li, Chunliang
    Yang, Shuhui
    Lin, Yan
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 197
  • [5] A Remark on Bilinear Square Functions
    Grafakos, Loukas
    [J]. HARMONIC ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, COMPLEX ANALYSIS, BANACH SPACES, AND OPERATOR THEORY, VOL 1: CELEBRATING CORA SADOSKY'S LIFE, 2016, 4 : 153 - 157
  • [6] BOUNDEDNESS CRITERION FOR BILINEAR FOURIER MULTIPLIER OPERATORS
    Miyachi, Akihiko
    Tomita, Naohito
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (01) : 55 - 76
  • [7] Weighted Bounds for Multilinear Square Functions
    The Anh Bui
    Mahdi Hormozi
    [J]. Potential Analysis, 2017, 46 : 135 - 148
  • [8] Weighted Bounds for Multilinear Square Functions
    The Anh Bui
    Hormozi, Mahdi
    [J]. POTENTIAL ANALYSIS, 2017, 46 (01) : 135 - 148
  • [9] MULTILINEAR SQUARE FUNCTIONS AND MULTIPLE WEIGHTS
    Grafakos, Loukas
    Mohanty, Parasar
    Shrivastava, Saurabh
    [J]. MATHEMATICA SCANDINAVICA, 2019, 124 (01) : 149 - 160
  • [10] Some Weighted Estimates for Multilinear Fourier Multiplier Operators
    Si, Zengyan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,