Optical cleaning of congruent lithium niobate crystals

被引:78
|
作者
Koesters, M. [1 ]
Sturman, B. [2 ]
Werheit, P. [1 ]
Haertle, D. [1 ]
Buse, K. [1 ]
机构
[1] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
[2] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia
关键词
HIGH LIGHT INTENSITIES; PHOTOREFRACTIVE CENTERS; LINBO3; TEMPERATURE; GENERATION;
D O I
10.1038/NPHOTON.2009.142
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Lithium niobate (LiNbO3), also called the 'silicon of photonics', is indispensable in advanced photonics and nonlinear optics(1-10). For many applications, however, the material is too polluted by transition metals, which are unavoidable at the parts per million level. These impurities serve as sources and traps for photoelectrons, causing optical damage and hampering the usability of LiNbO3. Efforts have therefore been made to get rid of the photoexcitable electrons(11,12). Here we introduce a method termed 'optical cleaning'. We show theoretically and experimentally that, if the material is heated to moderate temperatures, allowing ions to migrate and to maintain charge neutrality, an appropriately moving light beam pushes photoexcitable electrons out of the illuminated region like a brush, and provides exponential cleaning. This promises purification levels that are beyond the reach of current technologies.
引用
收藏
页码:510 / 513
页数:4
相关论文
共 50 条
  • [31] Diffusion of niobium in congruent lithium niobate
    Born, E
    Hornsteiner, J
    Metzger, T
    Riha, E
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2000, 177 (02): : 393 - 400
  • [32] Diffusion of niobium in congruent lithium niobate
    Born, E.
    Hornsteiner, J.
    Metzger, T.
    Riha, E.
    [J]. 2000, Wiley-VCH Verlag Berlin GmbH, Weinheim, Germany (177):
  • [33] Pyroelectric electron emission behaviors of congruent and stoichiometric lithium niobate single crystals
    Bourim, E
    Kim, DW
    Kin, VS
    Moon, CW
    Yoo, IK
    [J]. JOURNAL OF ELECTROCERAMICS, 2004, 13 (1-3) : 293 - 297
  • [34] Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals
    Mailis, S
    Riziotis, C
    Wellington, IT
    Smith, PGR
    Gawith, CBE
    Eason, RW
    [J]. OPTICS LETTERS, 2003, 28 (16) : 1433 - 1435
  • [35] Suppression of optical damage at 532 nm in Holmium doped congruent lithium niobate
    Barnes, Eftihia
    O'Connell, Nathan H.
    Balli, Nicolas R.
    Pokhrel, Madhab
    Movsesyan, Anush
    Kokanyan, Edvard
    Sardar, Dhiraj K.
    [J]. OPTICS EXPRESS, 2014, 22 (21): : 26222 - 26231
  • [36] Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals
    Schwesyg, J. R.
    Phillips, C. R.
    Ioakeimidi, K.
    Kajiyama, M. C. C.
    Falk, M.
    Jundt, D. H.
    Buse, K.
    Fejer, M. M.
    [J]. OPTICS LETTERS, 2010, 35 (07) : 1070 - 1072
  • [37] The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate
    Surovtsev, NV
    Malinovskii, VK
    Pugachev, AM
    Shebanin, AP
    [J]. PHYSICS OF THE SOLID STATE, 2003, 45 (03) : 534 - 541
  • [38] The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate
    N. V. Surovtsev
    V. K. Malinovskii
    A. M. Pugachev
    A. P. Shebanin
    [J]. Physics of the Solid State, 2003, 45 : 534 - 541
  • [39] Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method
    Hao, Yongxin
    Qin, Juan
    Sun, Jun
    Yang, Jinfeng
    Li, Qinglian
    Huang, Guijun
    Xu, Jingjun
    [J]. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2024, 39 (10): : 1167 - 1174
  • [40] Processing and characterization of improved congruent lithium niobate
    Anikiev, A. A.
    Umarov, M. F.
    Scott, J. F.
    [J]. AIP ADVANCES, 2018, 8 (11):