Contraction of superintegrable Hamiltonian systems

被引:12
|
作者
Calzada, JA [1 ]
Negro, J
del Olmo, MA
Rodríguez, MA
机构
[1] Univ Valladolid, Dept Matemat Aplicada Ingn, E-47011 Valladolid, Spain
[2] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain
[3] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain
关键词
D O I
10.1063/1.533147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the contraction of a class of superintegrable Hamiltonians by implementing the contraction of the underlying Lie groups. We also discuss the behavior of the coordinate systems that separate their equations of motion, the motion constants, as well as the corresponding solutions along such a process. (C) 2000 American Institute of Physics. [S0022-2488(99)02412-3].
引用
收藏
页码:317 / 336
页数:20
相关论文
共 50 条
  • [21] SUPERINTEGRABLE SYSTEMS
    KUPERSHMIDT, B
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (20): : 6562 - 6563
  • [22] Superintegrable deformations of the Smorodinsky-Winternitz Hamiltonian
    Ballesteros, A
    Herranz, FJ
    Musso, F
    Ragnisco, O
    SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 1 - 14
  • [23] On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models
    Rodriguez, Miguel A.
    Tempesta, Piergiulio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (50)
  • [24] Family of nonstandard integrable and superintegrable classical Hamiltonian systems in non-vanishing magnetic fields
    Hoque, Md Fazlul
    Snobl, Libor
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (16)
  • [25] How to embed an arbitrary Hamiltonian dynamics in a superintegrable (or just integrable) Hamiltonian dynamics
    Calogero, F.
    Leyvraz, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (14)
  • [26] On maximally superintegrable systems
    Tsiganov, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (03): : 178 - 190
  • [27] Perturbations of Superintegrable Systems
    Hanssmann, Heinz
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 79 - 95
  • [28] Superintegrable systems on a sphere
    Borisov, AV
    Mamaev, IS
    REGULAR & CHAOTIC DYNAMICS, 2005, 10 (03): : 257 - 266
  • [29] On the superintegrable Richelot systems
    Tsiganov, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (05)
  • [30] On maximally superintegrable systems
    A. V. Tsiganov
    Regular and Chaotic Dynamics, 2008, 13