On maximally superintegrable systems

被引:24
|
作者
Tsiganov, A. V. [1 ]
机构
[1] St Petersburg State Univ, VA Fock Inst Phys, St Petersburg 198504, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2008年 / 13卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
superintegrable systems; Toda lattices; Stackel systems;
D O I
10.1134/S1560354708030040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Locally any completely integrable system is maximally superintegrable system since we have the necessary number of the action-angle variables. The main problem is the construction of the single-valued additional integrals of motion on the whole phase space by using these multi-valued action-angle variables. Some constructions of the additional integrals of motion for the Stackel systems and for the integrable systems related with two different quadratic r-matrix algebras are discussed. Among these system there are the open Heisenberg magnet and the open Toda lattices associated with the different root systems.
引用
收藏
页码:178 / 190
页数:13
相关论文
共 50 条
  • [1] On maximally superintegrable systems
    A. V. Tsiganov
    [J]. Regular and Chaotic Dynamics, 2008, 13
  • [2] On the Integrable Deformations of the Maximally Superintegrable Systems
    Lazureanu, Cristian
    [J]. SYMMETRY-BASEL, 2021, 13 (06):
  • [3] Maximally superintegrable systems of Winternitz type
    Gonera, C
    [J]. SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 47 - 52
  • [4] Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
    Capel, Joshua J.
    Kress, Jonathan M.
    Post, Sarah
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [5] Maximally superintegrable systems in flat three-dimensional space are linearizable
    Nucci, M. C.
    Campoamor-Stursberg, R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (01)
  • [6] An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals
    Marchesiello, Antonella
    Snobl, Libor
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [7] Maximally Superintegrable Gaudin Magnet: A Unified Approach
    Á. Ballesteros
    F. Musso
    O. Ragnisco
    [J]. Theoretical and Mathematical Physics, 2003, 137 : 1645 - 1651
  • [8] Maximally superintegrable Gaudin magnet: A unified approach
    Ballesteros, A
    Musso, F
    Ragnisco, O
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (03) : 1645 - 1651
  • [9] Superintegrable Extensions of Superintegrable Systems
    Chanu, Claudia M.
    Degiovanni, Luca
    Rastelli, Giovanni
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [10] Maximally superintegrable Smorodinsky-Winternitz systems on the N-dimensional sphere and hyperbolic spaces
    Herranz, FJ
    Ballesteros, A
    Santander, M
    Sanz-Gil, T
    [J]. SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 75 - 89