Contraction of superintegrable Hamiltonian systems

被引:12
|
作者
Calzada, JA [1 ]
Negro, J
del Olmo, MA
Rodríguez, MA
机构
[1] Univ Valladolid, Dept Matemat Aplicada Ingn, E-47011 Valladolid, Spain
[2] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain
[3] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain
关键词
D O I
10.1063/1.533147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the contraction of a class of superintegrable Hamiltonians by implementing the contraction of the underlying Lie groups. We also discuss the behavior of the coordinate systems that separate their equations of motion, the motion constants, as well as the corresponding solutions along such a process. (C) 2000 American Institute of Physics. [S0022-2488(99)02412-3].
引用
收藏
页码:317 / 336
页数:20
相关论文
共 50 条
  • [31] On Euler superintegrable systems
    Grigoryev, Yu A.
    Khudobakhshov, V. A.
    Tsiganov, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (07)
  • [32] On superintegrable monopole systems
    Hoque, Md Fazlul
    Marquette, Ian
    Zhang, Yao-Zhong
    XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25), 2018, 965
  • [33] The Drach superintegrable systems
    Tsiganov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : 7407 - 7422
  • [34] Perturbations of Superintegrable Systems
    Heinz Hanßmann
    Acta Applicandae Mathematicae, 2015, 137 : 79 - 95
  • [35] On contraction of time-varying port-Hamiltonian systems
    Barabanov, Nikita
    Ortega, Romeo
    Pyrkin, Anton
    SYSTEMS & CONTROL LETTERS, 2019, 133
  • [36] Discretization of superintegrable systems on a plane
    Kabat, Z.
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [37] The geometry of integrable and superintegrable systems
    Ibort, A.
    Marmo, G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (02) : 1109 - 1117
  • [38] Addition Theorems and Superintegrable Systems
    Tsyganov, A. V.
    DOKLADY MATHEMATICS, 2008, 78 (02) : 759 - 762
  • [39] Superintegrable systems on the loop algebras
    Tsiganov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (08): : 2075 - 2092
  • [40] Exact solvability of superintegrable systems
    Tempesta, P
    Turbiner, AV
    Winternitz, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) : 4248 - 4257