Robust sparse principal component analysis by DC programming algorithm

被引:0
|
作者
Li, Jieya [1 ]
Yang, Liming [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
关键词
Principal component analysis; sparseness; robustness; zero-norm; DC programming; face reconstruction; REGRESSION FRAMEWORK; DIFFERENCE;
D O I
10.3233/JIFS-191617
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The classical principal component analysis (PCA) is not sparse enough since it is based on the L-2-norm that is also prone to be adversely affected by the presence of outliers and noises. In order to address the problem, a sparse robust PCA framework is proposed based on the min of zero-norm regularization and the max of L-p-norm (0 < p <= 2) PCA. Furthermore, we developed a continuous optimization method, DC (difference of convex functions) programming algorithm (DCA), to solve the proposed problem. The resulting algorithm (called DC-LpZSPCA) is convergent linearly. In addition, when choosing different p values, the model can keep robust and is applicable to different data types. Numerical simulations are simulated in artificial data sets and Yale face data sets. Experiment results show that the proposed method can maintain good sparsity and anti-outlier ability.
引用
收藏
页码:3183 / 3193
页数:11
相关论文
共 50 条
  • [1] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [2] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [3] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [4] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [5] Bayesian robust principal component analysis with structured sparse component
    Han, Ningning
    Song, Yumeng
    Song, Zhanjie
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 144 - 158
  • [6] Robust Principal Component Analysis for Sparse Face Recognition
    Wang, Ling
    Cheng, Hong
    [J]. PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 171 - 176
  • [7] A plug-in approach to sparse and robust principal component analysis
    Luca Greco
    Alessio Farcomeni
    [J]. TEST, 2016, 25 : 449 - 481
  • [8] Robust sparse principal component analysis: situation of full sparseness
    Alkan, B. Baris
    Unaldi, I
    [J]. JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) : 5 - 20
  • [9] Fuzzy Sparse Deviation Regularized Robust Principal Component Analysis
    Gao, Yunlong
    Lin, Tingting
    Pan, Jinyan
    Nie, Feiping
    Xie, Youwei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5645 - 5660
  • [10] A plug-in approach to sparse and robust principal component analysis
    Greco, Luca
    Farcomeni, Alessio
    [J]. TEST, 2016, 25 (03) : 449 - 481