Fuzzy Sparse Deviation Regularized Robust Principal Component Analysis

被引:7
|
作者
Gao, Yunlong [1 ]
Lin, Tingting [1 ]
Pan, Jinyan [2 ]
Nie, Feiping [3 ]
Xie, Youwei [2 ]
机构
[1] Xiamen Univ, Sch Aeronaut & Astronaut, Xiamen 361102, Fujian, Peoples R China
[2] Jimei Univ, Sch Informat Engn, Xiamen 361021, Fujian, Peoples R China
[3] Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Dimensionality reduction; principal component analysis; fuzzy; sparse; FACE RECOGNITION; PCA;
D O I
10.1109/TIP.2022.3199086
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust principal component analysis (RPCA) is a technique that aims to make principal component analysis (PCA) robust to noise samples. The current modeling approaches of RPCA were proposed by analyzing the prior distribution of the reconstruction error terms. However, these methods ignore the influence of samples with large reconstruction errors, as well as the valid information of these samples in principal component space, which will degrade the ability of PCA to extract the principal component of data. In order to solve this problem, Fuzzy sparse deviation regularized robust principal component Analysis (FSD-PCA) is proposed in this paper. First, FSD-PCA learns the principal components by minimizing the square of 22 -norm-based reconstruction error. Then, FSD-PCA introduces sparse deviation on reconstruction error term to relax the samples with large bias, thus FSD-PCA can process noise and principal components of samples separately as well as improve the ability of FSD-PCA for retaining the principal component information. Finally, FSD-PCA estimates the prior probability of each sample by fuzzy weighting based on the relaxed reconstruction error, which can improve the robustness of the model. The experimental results indicate that the proposed model performs excellent robustness against different types of noise than the state-of-art algorithms, and the sparse deviation term enables FSD-PCA to process noise information and principal component information separately, so FSD-PCA can filter the noise information of an image and restore the corrupted image.
引用
收藏
页码:5645 / 5660
页数:16
相关论文
共 50 条
  • [1] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [2] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [3] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [4] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [5] Bayesian robust principal component analysis with structured sparse component
    Han, Ningning
    Song, Yumeng
    Song, Zhanjie
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 144 - 158
  • [6] Laplacian regularized robust principal component analysis for process monitoring
    Xiu, Xianchao
    Yang, Ying
    Kong, Lingchen
    Liu, Wanquan
    [J]. JOURNAL OF PROCESS CONTROL, 2020, 92 : 212 - 219
  • [7] Laplacian regularized robust principal component analysis for process monitoring
    Xiu, Xianchao
    Yang, Ying
    Kong, Lingchen
    Liu, Wanquan
    [J]. Journal of Process Control, 2020, 92 : 212 - 219
  • [8] Robust Principal Component Analysis for Sparse Face Recognition
    Wang, Ling
    Cheng, Hong
    [J]. PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 171 - 176
  • [9] Regularized Principal Component Analysis
    Aflalo, Yonathan
    Kimmel, Ron
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 1 - 12
  • [10] Regularized principal component analysis
    Yonathan Aflalo
    Ron Kimmel
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 1 - 12