Bayesian robust principal component analysis with structured sparse component

被引:9
|
作者
Han, Ningning [1 ]
Song, Yumeng [2 ]
Song, Zhanjie [1 ,3 ]
机构
[1] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
[2] Sch Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Robust principal component analysis; Low-rank component; Structured sparse component; Variational Bayesian inference; Structured sparsity; LOW-RANK; MATRIX RECOVERY; ALGORITHM;
D O I
10.1016/j.csda.2016.12.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The robust principal component analysis (RPCA) refers to the decomposition of an observed matrix into the low-rank component and the sparse component. Conventional methods model the sparse component as pixel-wisely sparse (e.g., l(1)-norm for the sparsity). However, in many practical scenarios, elements in the sparse part are not truly independently sparse but distributed with contiguous structures. This is the reason why representative RPCA techniques fail to work well in realistic complex situations. To solve this problem, a Bayesian framework for RPCA with structured sparse component is proposed, where both amplitude and support correlation structure are considered simultaneously in recovering the sparse component. The model learning is based on the variational Bayesian inference, which can potentially be applied to estimate the posteriors of all latent variables. Experimental results demonstrate the proposed methodology is validated on synthetic and real data. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 158
页数:15
相关论文
共 50 条
  • [1] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [2] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [3] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [4] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [5] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [6] BAYESIAN LEARNING FOR ROBUST PRINCIPAL COMPONENT ANALYSIS
    Sundin, Martin
    Chatterjee, Saikat
    Jansson, Magnus
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2361 - 2365
  • [7] Spike and slab Bayesian sparse principal component analysis
    Ning, Yu-Chien Bo
    Ning, Ning
    [J]. STATISTICS AND COMPUTING, 2024, 34 (03)
  • [8] Robust Principal Component Analysis for Sparse Face Recognition
    Wang, Ling
    Cheng, Hong
    [J]. PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 171 - 176
  • [9] Fast Algorithms for Structured Robust Principal Component Analysis
    Ayazoglu, Mustafa
    Sznaier, Mario
    Camps, Octavia I.
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1704 - 1711
  • [10] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286