Spike and slab Bayesian sparse principal component analysis

被引:0
|
作者
Ning, Yu-Chien Bo [1 ]
Ning, Ning [2 ]
机构
[1] Harvard T H Chan Sch Publ Hlth, Dept Epidemiol, 677 Huntington Ave, Boston, MA 02115 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Bayesian SPCA; Spike and slab prior; Variational inference; Parameter expansion; VARIATIONAL INFERENCE; VARIABLE SELECTION; UNCERTAINTY QUANTIFICATION; POSTERIOR CONCENTRATION; LINEAR-REGRESSION; EM; CONTRACTION; NEEDLES; STRAW;
D O I
10.1007/s11222-024-10430-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sparse principal component analysis (SPCA) is a popular tool for dimensionality reduction in high-dimensional data. However, there is still a lack of theoretically justified Bayesian SPCA methods that can scale well computationally. One of the major challenges in Bayesian SPCA is selecting an appropriate prior for the loadings matrix, considering that principal components are mutually orthogonal. We propose a novel parameter-expanded coordinate ascent variational inference (PX-CAVI) algorithm. This algorithm utilizes a spike and slab prior, which incorporates parameter expansion to cope with the orthogonality constraint. Besides comparing to two popular SPCA approaches, we introduce the PX-EM algorithm as an EM analogue to the PX-CAVI algorithm for comparison. Through extensive numerical simulations, we demonstrate that the PX-CAVI algorithm outperforms these SPCA approaches, showcasing its superiority in terms of performance. We study the posterior contraction rate of the variational posterior, providing a novel contribution to the existing literature. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. The R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{R}$$\end{document} package VBsparsePCA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{VBsparsePCA}$$\end{document} with an implementation of the algorithm is available on the Comprehensive R Archive Network (CRAN).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bayesian robust principal component analysis with structured sparse component
    Han, Ningning
    Song, Yumeng
    Song, Zhanjie
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 144 - 158
  • [2] Online Bayesian Sparse Learning with Spike and Slab Priors
    Fang, Shikai
    Zhe, Shandian
    Lee, Kuang-chih
    Zhang, Kai
    Neville, Jennifer
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 142 - 151
  • [3] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [4] BAYESIAN ESTIMATION OF SPARSE SIGNALS WITH A CONTINUOUS SPIKE-AND-SLAB PRIOR
    Rockova, Veronika
    [J]. ANNALS OF STATISTICS, 2018, 46 (01): : 401 - 437
  • [5] On Bayesian principal component analysis
    Smidl, Vaclav
    Quinn, Anthony
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4101 - 4123
  • [6] Bayesian principal component analysis
    Nounou, MN
    Bakshi, BR
    Goel, PK
    Shen, XT
    [J]. JOURNAL OF CHEMOMETRICS, 2002, 16 (11) : 576 - 595
  • [7] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [8] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [9] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [10] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14