Spike and slab Bayesian sparse principal component analysis

被引:0
|
作者
Ning, Yu-Chien Bo [1 ]
Ning, Ning [2 ]
机构
[1] Harvard T H Chan Sch Publ Hlth, Dept Epidemiol, 677 Huntington Ave, Boston, MA 02115 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Bayesian SPCA; Spike and slab prior; Variational inference; Parameter expansion; VARIATIONAL INFERENCE; VARIABLE SELECTION; UNCERTAINTY QUANTIFICATION; POSTERIOR CONCENTRATION; LINEAR-REGRESSION; EM; CONTRACTION; NEEDLES; STRAW;
D O I
10.1007/s11222-024-10430-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sparse principal component analysis (SPCA) is a popular tool for dimensionality reduction in high-dimensional data. However, there is still a lack of theoretically justified Bayesian SPCA methods that can scale well computationally. One of the major challenges in Bayesian SPCA is selecting an appropriate prior for the loadings matrix, considering that principal components are mutually orthogonal. We propose a novel parameter-expanded coordinate ascent variational inference (PX-CAVI) algorithm. This algorithm utilizes a spike and slab prior, which incorporates parameter expansion to cope with the orthogonality constraint. Besides comparing to two popular SPCA approaches, we introduce the PX-EM algorithm as an EM analogue to the PX-CAVI algorithm for comparison. Through extensive numerical simulations, we demonstrate that the PX-CAVI algorithm outperforms these SPCA approaches, showcasing its superiority in terms of performance. We study the posterior contraction rate of the variational posterior, providing a novel contribution to the existing literature. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. The R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{R}$$\end{document} package VBsparsePCA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{VBsparsePCA}$$\end{document} with an implementation of the algorithm is available on the Comprehensive R Archive Network (CRAN).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] ADAPTIVE WEIGHTED SPARSE PRINCIPAL COMPONENT ANALYSIS
    Yi, Shuangyan
    Liang, Yongsheng
    Liu, Wei
    Meng, Fanyang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [42] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    [J]. STAT, 2022, 11 (01):
  • [43] Approximation bounds for sparse principal component analysis
    Alexandre d’Aspremont
    Francis Bach
    Laurent El Ghaoui
    [J]. Mathematical Programming, 2014, 148 : 89 - 110
  • [44] A New Basis for Sparse Principal Component Analysis
    Chen, Fan
    Rohe, Karl
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 421 - 434
  • [45] Certifiably optimal sparse principal component analysis
    Berk, Lauren
    Bertsimasi, Dimitris
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (03) : 381 - 420
  • [46] An exact approach to sparse principal component analysis
    Alessio Farcomeni
    [J]. Computational Statistics, 2009, 24 : 583 - 604
  • [47] SPARSE PRINCIPAL COMPONENT ANALYSIS WITH MISSING OBSERVATIONS
    Park, Seyoung
    Zhao, Hongyu
    [J]. ANNALS OF APPLIED STATISTICS, 2019, 13 (02): : 1016 - 1042
  • [48] An exact approach to sparse principal component analysis
    Farcomeni, Alessio
    [J]. COMPUTATIONAL STATISTICS, 2009, 24 (04) : 583 - 604
  • [49] Bayesian principal component analysis with mixture priors
    Hyun Sook Oh
    Dai-Gyoung Kim
    [J]. Journal of the Korean Statistical Society, 2010, 39 : 387 - 396
  • [50] Bayesian Maximum Margin Principal Component Analysis
    Du, Changying
    Zhe, Shandian
    Zhuang, Fuzhen
    Qi, Yuan
    He, Qing
    Shi, Zhongzhi
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2582 - 2588