Certifiably optimal sparse principal component analysis

被引:23
|
作者
Berk, Lauren [1 ]
Bertsimasi, Dimitris [1 ]
机构
[1] MIT, Operat Res Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Sparse principal component analysis; Principal component analysis; Mixed integer optimization; Sparse eigenvalues; POWER METHOD; OPTIMIZATION; RELAXATIONS; REGRESSION; SELECTION; ROTATION;
D O I
10.1007/s12532-018-0153-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper addresses the sparse principal component analysis (SPCA) problem for covariance matrices in dimension n aiming to find solutions with sparsity k using mixed integer optimization. We propose a tailored branch-and-bound algorithm, Optimal-SPCA, that enables us to solve SPCA to certifiable optimality in seconds for n=100or higher to find high-quality feasible solutions in seconds while taking several hours to prove optimality. We apply our methods to a number of real data sets to demonstrate that our approach scales to the same problem sizes attempted by other methods, while providing superior solutions compared to those methods, explaining a higher portion of variance and permitting complete control over the desired sparsity. The software that was reviewed as part of this submission has been given the DOI (digital object identifier) 10.5281/zenodo.2027898.
引用
收藏
页码:381 / 420
页数:40
相关论文
共 50 条
  • [1] Certifiably optimal sparse principal component analysis
    Lauren Berk
    Dimitris Bertsimas
    [J]. Mathematical Programming Computation, 2019, 11 : 381 - 420
  • [2] Optimal solutions for sparse principal component analysis
    d'Aspremont, Alexandre
    Bach, Francis
    El Ghaoui, Laurent
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 1269 - 1294
  • [3] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [4] Certifiably optimal sparse inverse covariance estimation
    Bertsimas, Dimitris
    Lamperski, Jourdain
    Pauphilet, Jean
    [J]. MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) : 491 - 530
  • [5] Certifiably optimal sparse inverse covariance estimation
    Dimitris Bertsimas
    Jourdain Lamperski
    Jean Pauphilet
    [J]. Mathematical Programming, 2020, 184 : 491 - 530
  • [6] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [7] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [8] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    [J]. PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [9] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [10] Sparse kernel principal component analysis
    Tipping, ME
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639