Robust Principal Component Analysis for Sparse Face Recognition

被引:0
|
作者
Wang, Ling [1 ]
Cheng, Hong [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Elect Engn, Chengdu 610054, Sichuan, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In principal component analysis (PCA), l(2)/l(1)-norm is widely used to measure coding residual. In this case, it assume that the residual follows Gaussian/Laplacian distribution. However, it may fail to describe the coding errors in practice when there are outliers. Toward this end, this paper propose a robust PCA (RPCA) approach to solve the outlier problem, by modeling the cost function as a weighted regression problem. In face recognition progress, the observation samples and testing sample be projected on the principal space firstly. After that, in the new projection space, the face be classified based on the sparse representation. Simulation results illustrated the effectiveness of this approach.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [1] Improved Sparse Representation based on Robust Principal Component Analysis for Face Recognition
    Hou, Yi-Fu
    Pei, Wen-Juan
    Zhang, Yan
    Zheng, Chun-Hou
    [J]. FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2014, : 211 - 215
  • [2] ROBUST ADAPTED PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION
    Chen, Shaokang
    Lovell, Brian C.
    Shan, Ting
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (03) : 491 - 520
  • [3] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [4] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [5] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [6] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [7] An improved kernel principal component analysis based on sparse representation for face recognition
    Huang, Wei
    Wang, Xiaohui
    Zhu, Yinghui
    Zheng, Gengzhong
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (06): : 2709 - 2729
  • [8] Robust Sparse 2D Principal Component Analysis for Object Recognition
    Meng, Jicheng
    Zheng, Xiaolong
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (06): : 2509 - 2514
  • [9] Bayesian robust principal component analysis with structured sparse component
    Han, Ningning
    Song, Yumeng
    Song, Zhanjie
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 144 - 158
  • [10] Principal component net analysis for face recognition
    He, Lianghua
    Hu, Die
    Jiang, Changjun
    [J]. MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 734 - +