Stirling permutations, cycle structure of permutations and perfect matchings

被引:0
|
作者
Ma, Shi-Mei [1 ]
Yeh, Yeong-Nan [2 ]
机构
[1] Northeastern Univ, Sch Math & Stat, Qinhuangdao 066000, Hebei, Peoples R China
[2] Acad Sinica, Inst Math, Taipei, Taiwan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 04期
关键词
Stirling permutations; Excedances; Perfect matchings; Eulerian polynomials; 1/K-EULERIAN POLYNOMIALS; EULERIAN POLYNOMIALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide constructive proofs that the following three statistics are equidistributed: the number of ascent plateaus of Stirling permutations of order n, a weighted variant of the number of excedances in permutations of length n and the number of blocks with even maximal elements in perfect matchings of the set {1,2,3,...,2n}.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Doubly perfect nonlinear boolean permutations
    Poinsot, Laurent
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2010, 13 (06): : 571 - 582
  • [42] Permutations on finite fields with invariant cycle structure on lines
    Gerike, Daniel
    Kyureghyan, Gohar M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (09) : 1723 - 1740
  • [43] The cycle descent statistic on permutations
    Ma, Jun
    Ma, Shi-Mei
    Yeh, Yeong-Nan
    Zhu, Xu
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (04):
  • [44] RANDOM PERMUTATIONS WITH CYCLE WEIGHTS
    Betz, Volker
    Ueltschi, Daniel
    Velenik, Yvan
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 312 - 331
  • [45] The Cycle Enumerator of Unimodal Permutations
    Jean-Yves Thibon
    Annals of Combinatorics, 2001, 5 (3) : 493 - 500
  • [46] A New Universal Cycle for Permutations
    Dennis Wong
    Graphs and Combinatorics, 2017, 33 : 1393 - 1399
  • [47] Cycle lengths in sequences of permutations
    Mendelsohn, NS
    UTILITAS MATHEMATICA, 1996, 49 : 173 - 183
  • [48] A New Universal Cycle for Permutations
    Wong, Dennis
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1393 - 1399
  • [49] Perfect Structure on the Edge of Chaos Trapdoor Permutations from Indistinguishability Obfuscation
    Bitansky, Nir
    Paneth, Omer
    Wichs, Daniel
    THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 474 - 502
  • [50] Stable multivariate Eulerian polynomials and generalized Stirling permutations
    Haglund, J.
    Visontai, Mirko
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (04) : 477 - 487