Stirling permutations, cycle structure of permutations and perfect matchings

被引:0
|
作者
Ma, Shi-Mei [1 ]
Yeh, Yeong-Nan [2 ]
机构
[1] Northeastern Univ, Sch Math & Stat, Qinhuangdao 066000, Hebei, Peoples R China
[2] Acad Sinica, Inst Math, Taipei, Taiwan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 04期
关键词
Stirling permutations; Excedances; Perfect matchings; Eulerian polynomials; 1/K-EULERIAN POLYNOMIALS; EULERIAN POLYNOMIALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide constructive proofs that the following three statistics are equidistributed: the number of ascent plateaus of Stirling permutations of order n, a weighted variant of the number of excedances in permutations of length n and the number of blocks with even maximal elements in perfect matchings of the set {1,2,3,...,2n}.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the Lucky and Displacement Statistics of Stirling Permutations
    Colmenarejo, Laura
    Elder, Jennifer
    Harry, Kimberly J.
    Smith, Dorian
    Dawkins, Aleyah
    Harris, Pamela E.
    Kara, Selvi
    Tenner, Bridget Eileen
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (06)
  • [22] Analysis of Statistics for Generalized Stirling Permutations
    Kuba, Markus
    Panholzer, Alois
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (06): : 875 - 910
  • [23] Descents on quasi-Stirling permutations
    Elizalde, Sergi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [24] Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions
    Sokal, Alan D.
    Zeng, Jiang
    ADVANCES IN APPLIED MATHEMATICS, 2022, 138
  • [25] ALMOST PERFECT NONLINEAR PERMUTATIONS
    FENG, D
    LIU, B
    ELECTRONICS LETTERS, 1994, 30 (03) : 208 - 209
  • [26] Fixed points and cycle structure of random permutations
    Mukherjee, Sumit
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [27] Permutations with restricted cycle structure and an algorithmic application
    Beals, R
    Leedham-Green, CR
    Niemeyer, AC
    Praeger, CE
    Seress, A
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (05): : 447 - 464
  • [28] ON THE NUMBER AND CYCLE STRUCTURE OF THE PERMUTATIONS IN CERTAIN CLASSES
    PAVLOV, AI
    MATHEMATICS OF THE USSR-SBORNIK, 1984, 124 (3-4): : 521 - 540
  • [29] Routing Permutations on Spectral Expanders via Matchings
    Nenadov, Rajko
    COMBINATORICA, 2023, 43 (4) : 737 - 742
  • [30] Routing Permutations on Spectral Expanders via Matchings
    Rajko Nenadov
    Combinatorica, 2023, 43 : 737 - 742