Prediction of Chemical Inhibitors Efficiency for Reducing Deposition Thickness Using Artificial Neural Network

被引:4
|
作者
Lashkarbolooki, M. [1 ]
Seyfaee, A. [1 ]
Esmaeilzadeh, F. [1 ]
Mowla, D. [1 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Shiraz, Iran
关键词
Artificial neural network; deposition thickness; inhibitor; pipeline; CRUDE-OIL; WAX DEPOSITION; PRESSURE-DROP; PARAFFIN DEPOSITION; CARBON-DIOXIDE; MIXTURES; SOLUBILITY; SYSTEM; EQUILIBRIA; VISCOSITY;
D O I
10.1080/01932691.2013.811572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prediction of efficiency of chemical inhibitors to mitigation of deposition thickness is a key to developing crude oil transportation process. In this work, a feed-forward artificial neural network (ANN) algorithm has been applied to predict the influence of the mitigation effect of ethylene-co-vinyl acetate (EVA) copolymer and its combination with chloroform (C), acetone (A), P-xylene (PX), and petroleum ether (PE) on the deposition thickness in the pipeline. An optimized three-layer feed-forward ANN model using properties of the oil pipeline such as: inlet oil temperature, environmental (coolant mixture) temperature, oil Reynolds numbers; properties of injected inhibitor such as molecular weight, boiling point, and amount of injection; and time is presented. Different networks are considered and trained using 62661 data sets; the accuracy of the network is validated by 20888 testing data sets. To verify the network generalization, 29 different experiment data sets of four different set of inhibitors have been considered. It is found that the proposed ANN model is an alternative to experimentation and predicts deposition thickness without experimentation, vast information, and tedious and time-consuming calculations.
引用
下载
收藏
页码:1393 / 1400
页数:8
相关论文
共 50 条
  • [21] Using artificial neural network models for eutrophication prediction
    Huo, Shouliang
    He, Zhuoshi
    Su, Jing
    Xi, Beidou
    Zhu, Chaowei
    2013 INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2013 ISEST), 2013, 18 : 310 - 316
  • [22] Prediction of air pollutants by using an artificial neural network
    Sohn, SH
    Oh, SC
    Yeo, YK
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1999, 16 (03) : 382 - 387
  • [23] Pseudorange Correction Prediction Using Artificial Neural Network
    Alim, Onsy Abdel
    El-Rabbany, Ahmed
    Rashsd, Refaat
    Mohasseb, Mohamed
    PROCEEDINGS OF THE 2006 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2006, 2006, : 396 - 399
  • [24] Prediction of the plasma distribution using an artificial neural network
    李炜
    陈俊芳
    王腾
    Chinese Physics B, 2009, 18 (06) : 2441 - 2444
  • [25] Prediction of disturbances in the ionosphere by using the artificial neural network
    Liu, W
    Jiao, PN
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2001, 44 (01): : 24 - 30
  • [26] POSTTRANSPLANT TUBERCULOSIS PREDICTION USING ARTIFICIAL NEURAL NETWORK
    Starostina, Anna
    Parabina, Elena
    Maslikova, Ulyana
    Tsygankov, Igor
    Yaremin, Boris
    TRANSPLANT INTERNATIONAL, 2019, 32 : 413 - 413
  • [27] Prediction of extrusion pressure using an artificial neural network
    Li, YY
    Bridgwater, J
    POWDER TECHNOLOGY, 2000, 108 (01) : 65 - 73
  • [28] Using artificial neural network for reservoir eutrophication prediction
    Kuo, Jan-Tai
    Hsieh, Ming-Han
    Lung, Wu-Seng
    She, Nian
    ECOLOGICAL MODELLING, 2007, 200 (1-2) : 171 - 177
  • [29] Prediction of Egg Production Using Artificial Neural Network
    Ghazanfari, S.
    Nobari, K.
    Tahmoorespur, M.
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2011, 1 (01): : 11 - 16
  • [30] Prediction of rubber vulcanization using an artificial neural network
    Lubura, Jelena D.
    Kojic, Predrag
    Pavlicevic, Jelena
    Ikonic, Bojana
    Omorjan, Radovan
    Bera, Oskar
    HEMIJSKA INDUSTRIJA, 2021, 75 (05) : 277 - 283