Prediction of Chemical Inhibitors Efficiency for Reducing Deposition Thickness Using Artificial Neural Network

被引:4
|
作者
Lashkarbolooki, M. [1 ]
Seyfaee, A. [1 ]
Esmaeilzadeh, F. [1 ]
Mowla, D. [1 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Shiraz, Iran
关键词
Artificial neural network; deposition thickness; inhibitor; pipeline; CRUDE-OIL; WAX DEPOSITION; PRESSURE-DROP; PARAFFIN DEPOSITION; CARBON-DIOXIDE; MIXTURES; SOLUBILITY; SYSTEM; EQUILIBRIA; VISCOSITY;
D O I
10.1080/01932691.2013.811572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prediction of efficiency of chemical inhibitors to mitigation of deposition thickness is a key to developing crude oil transportation process. In this work, a feed-forward artificial neural network (ANN) algorithm has been applied to predict the influence of the mitigation effect of ethylene-co-vinyl acetate (EVA) copolymer and its combination with chloroform (C), acetone (A), P-xylene (PX), and petroleum ether (PE) on the deposition thickness in the pipeline. An optimized three-layer feed-forward ANN model using properties of the oil pipeline such as: inlet oil temperature, environmental (coolant mixture) temperature, oil Reynolds numbers; properties of injected inhibitor such as molecular weight, boiling point, and amount of injection; and time is presented. Different networks are considered and trained using 62661 data sets; the accuracy of the network is validated by 20888 testing data sets. To verify the network generalization, 29 different experiment data sets of four different set of inhibitors have been considered. It is found that the proposed ANN model is an alternative to experimentation and predicts deposition thickness without experimentation, vast information, and tedious and time-consuming calculations.
引用
收藏
页码:1393 / 1400
页数:8
相关论文
共 50 条
  • [41] Prediction of skin permeability using an artificial neural network
    Fu, XC
    Ma, XW
    Liang, WQ
    PHARMAZIE, 2002, 57 (09): : 655 - 656
  • [42] Prediction of Dissolved Oxygen Using Artificial Neural Network
    Areerachakul, Sirilak
    Junsawang, Prem
    Pomsathit, Auttapon
    COMPUTER COMMUNICATION AND MANAGEMENT, 2011, 5 : 524 - 528
  • [43] The prediction of meteorological variables using artificial neural network
    Erdil, Ahmet
    Arcaklioglu, Erol
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (7-8): : 1677 - 1683
  • [44] The Prediction of Permeability Using an Artificial Neural Network System
    Pazuki, G. R.
    Nikookar, M.
    Dehnavi, M.
    Al-Anazi, B.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2012, 30 (20) : 2108 - 2113
  • [45] PVT Properties Prediction Using Artificial Neural Network
    Rashidi, F.
    Rasouli, I.
    Khamehchi, E.
    PROCEEDINGS OF THE NINTH ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON COMBUSTION AND ENERGY UTILIZATION, 2008, : 78 - 81
  • [46] Prediction of semen quality using artificial neural network
    Badura, Anna
    Marzec-Wroblewska, Urszula
    Kaminski, Piotr
    Lakota, Pawel
    Ludwikowski, Grzegorz
    Szymanski, Marek
    Wasilow, Karolina
    Lorenc, Andzelika
    Bucinski, Adam
    JOURNAL OF APPLIED BIOMEDICINE, 2019, 17 (03) : 167 - 174
  • [47] Modeling Malware Prediction Using Artificial Neural Network
    Anuar, Syahid
    Ahmad, Noor Azurati
    Sahibuddin, Shamsul
    Ariffin, Aswami
    Saupi, Afifah
    Zamani, Nazri Ahmad
    Jeffry, Yasmin
    Efendy, Firham
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_18), 2018, 303 : 240 - 248
  • [48] Porosity Log Prediction Using Artificial Neural Network
    Saputro, Oki Dwi
    Maulana, Zulfikar Lazuardi
    Latief, Fourier Dzar Eljabbar
    6TH ASIAN PHYSICS SYMPOSIUM, 2016, 739
  • [49] Prediction of pavement performance using artificial neural network
    Wang, Y.L.
    Wang, B.G.
    1600, Xi'an Highway University (21):
  • [50] Stock Market Prediction by Using Artificial Neural Network
    Yetis, Yunus
    Kaplan, Halid
    Jamshidi, Mo
    2014 WORLD AUTOMATION CONGRESS (WAC): EMERGING TECHNOLOGIES FOR A NEW PARADIGM IN SYSTEM OF SYSTEMS ENGINEERING, 2014,