Prediction of extrusion pressure using an artificial neural network

被引:48
|
作者
Li, YY
Bridgwater, J
机构
[1] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England
[2] Univ Cambridge, Dept Chem Engn, Cambridge CB2 3RA, England
关键词
artificial neural network; paste extrusion; extrusion pressure;
D O I
10.1016/S0032-5910(99)00254-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A three layer feed-forward artificial neutral network (ANN) model was used for the description of extrusion pressure. The studies employ experimental data obtained from capillary flow experiments using a paste containing 5A zeolite, bentonite and water. On comparing the experimental data, the predictions using the Benbow-Bridgwater equation and the ANN model predictions, it is found that the ANN model is capable of predicting the extrusion pressure well. The neural network model shows how the significant parameters influencing extrusion pressure can be found. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [1] Improvement of Blood Pressure Prediction Using Artificial Neural Network
    Katayama, Kyoko
    Koyama, Shouhei
    Ishizawa, Hiroaki
    Fujimoto, Keisaku
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2018, : 223 - 227
  • [2] Burst Pressure Prediction of Cylindrical Vessels Using Artificial Neural Network
    Zolfaghari, Abolfazl
    Izadi, Moein
    [J]. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [3] Hybrid artificial artificial neural network for prediction and control of process variables in food extrusion
    Cubeddu, A.
    Rauh, C.
    Delgado, A.
    [J]. INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2014, 21 : 142 - 150
  • [4] Terrorism prediction using artificial neural network
    Soliman, Ghada M.A.
    Abou-El-Enien, Tarek H.M.
    [J]. Revue d'Intelligence Artificielle, 2019, 33 (02) : 81 - 87
  • [5] Prediction of Diabetes by using Artificial Neural Network
    Sapon, Muhammad Akmal
    Ismail, Khadijah
    Zainudin, Suehazlyn
    [J]. CIRCUITS, SYSTEM AND SIMULATION, 2011, 7 : 299 - 303
  • [6] Failure pressure prediction of pipeline with single corrosion defect using artificial neural network
    Chin, Kiu Toh
    Arumugam, Thibankumar
    Karuppanan, Saravanan
    Ovinis, Mark
    [J]. NAUKA I TEHNOLOGII TRUBOPROVODNOGO TRANSPORTA NEFTI I NEFTEPRODUKTOV-SCIENCE & TECHNOLOGIES-OIL AND OIL PRODUCTS PIPELINE TRANSPORTATION, 2021, 11 (02): : 166 - 171
  • [7] Prediction of detonation pressure of aluminized explosive by Artificial Neural Network
    Liu Yonggang
    Tian Xin
    Jiang Yueqiang
    Li Gongbing
    Li Yizhou
    [J]. BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING II, PTS 1 AND 2, 2013, 641-642 : 460 - 463
  • [8] Network Traffic Anomaly Prediction Using Artificial Neural Network
    Ciptaningtyas, Hening Titi
    Fatichah, Chastine
    Sabila, Altea
    [J]. ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016, 2017, 1818
  • [9] Prediction of pressure coefficient on setback building by artificial neural network
    Bairagi, Amlan Kumar
    Dalui, Sujit Kumar
    [J]. CANADIAN JOURNAL OF CIVIL ENGINEERING, 2021, 48 (10) : 1364 - 1385
  • [10] Pseudorange Correction Prediction Using Artificial Neural Network
    Alim, Onsy Abdel
    El-Rabbany, Ahmed
    Rashsd, Refaat
    Mohasseb, Mohamed
    [J]. PROCEEDINGS OF THE 2006 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2006, 2006, : 396 - 399