Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition

被引:44
|
作者
Zhang, Yu [1 ]
Zhou, Guoxu [2 ]
Jin, Jing [1 ]
Zhang, Yangsong [3 ]
Wang, Xingyu [1 ]
Cichocki, Andrzej [4 ]
机构
[1] East China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Peoples R China
[4] RIKEN Brain Sci Inst, Lab Adv Brain Signal Proc, Wako, Saitama 3510198, Japan
关键词
Brain-computer interface (BCI); Electroencephalogram (EEG); Multiway canonical correlation analysis (MCCA); Sparse Bayesian learning; Steady-state visual evoked potential (SSVEP); FREQUENCY RECOGNITION; BRAIN; CLASSIFICATION;
D O I
10.1016/j.neucom.2016.11.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
L1-regularized multiway canonical correlation analysis (L1-MCCA) has been introduced to reference signal optimization in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The effectiveness of L1-regularization on significant trial selection highly depends on the regularization parameter setting, which can be typically determined by cross-validation (CV). However, CV will substantially reduce the practicability of BCI system due to additional data requirement for the parameter validation and relatively high computational cost. To solve the problem, this study proposes a Bayesian version of L1-MCCA (called SBMCCA) by exploiting sparse Bayesian learning. The SBMCCA method avoids CV and can efficiently estimate the model parameters under the Bayesian evidence framework. Experimental results show that the SBMCCA method achieved comparable recognition accuracy but much higher computational efficiency in contrast to the L1-MCCA method.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [1] Sparse multiway canonical correlation analysis for multimodal stroke recovery data
    Das, Subham
    West, Franklin D.
    Park, Cheolwoo
    BIOMETRICAL JOURNAL, 2024, 66 (02)
  • [2] DEEP MULTIWAY CANONICAL CORRELATION ANALYSIS FOR MULTI-SUBJECT EEG NORMALIZATION
    Katthi, Jaswanth Reddy
    Ganapathy, Sriram
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1245 - 1249
  • [3] Multiway generalized canonical correlation analysis
    Gloaguen, Arnaud
    Philippe, Cathy
    Frouin, Vincent
    Gennari, Giulia
    Dehaene-Lambertz, Ghislaine
    Le Brusquet, Laurent
    Tenenhaus, Arthur
    BIOSTATISTICS, 2022, 23 (01) : 240 - 256
  • [4] Multichannel EEG-Based Emotion Recognition via Group Sparse Canonical Correlation Analysis
    Zheng, Wenming
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2017, 9 (03) : 281 - 290
  • [5] Multiway canonical correlation analysis of brain data
    de Cheveigne, Alain
    Di Liberto, Giovanni M.
    Arzounian, Dorothee
    Wong, Daniel D. E.
    Hjortkjaer, Jens
    Fuglsang, Soren
    Parra, Lucas C.
    NEUROIMAGE, 2019, 186 : 728 - 740
  • [6] Sparse canonical correlation analysis for mobile media recognition on the cloud
    Wang, Yanjiang
    Zhou, Bin
    Liu, Weifeng
    Zhang, Huimin
    Journal of Mobile Multimedia, 2017, 12 (3-4): : 265 - 276
  • [7] Multiway Canonical Correlation Analysis for Frequency Components Recognition in SSVEP-Based BCIs
    Zhang, Yu
    Zhou, Guoxu
    Zhao, Qibin
    Onishi, Akinari
    Jin, Jing
    Wang, Xingyu
    Cichocki, Andrzej
    NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 287 - +
  • [8] Sparse canonical correlation analysis
    David R. Hardoon
    John Shawe-Taylor
    Machine Learning, 2011, 83 : 331 - 353
  • [9] Sparse canonical correlation analysis
    Hardoon, David R.
    Shawe-Taylor, John
    MACHINE LEARNING, 2011, 83 (03) : 331 - 353
  • [10] Sparse Representation based Discriminative Canonical Correlation Analysis for Face Recognition
    Guan, Naiyang
    Zhang, Xiang
    Luo, Zhigang
    Lan, Long
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 51 - 56