Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition

被引:44
|
作者
Zhang, Yu [1 ]
Zhou, Guoxu [2 ]
Jin, Jing [1 ]
Zhang, Yangsong [3 ]
Wang, Xingyu [1 ]
Cichocki, Andrzej [4 ]
机构
[1] East China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Peoples R China
[4] RIKEN Brain Sci Inst, Lab Adv Brain Signal Proc, Wako, Saitama 3510198, Japan
关键词
Brain-computer interface (BCI); Electroencephalogram (EEG); Multiway canonical correlation analysis (MCCA); Sparse Bayesian learning; Steady-state visual evoked potential (SSVEP); FREQUENCY RECOGNITION; BRAIN; CLASSIFICATION;
D O I
10.1016/j.neucom.2016.11.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
L1-regularized multiway canonical correlation analysis (L1-MCCA) has been introduced to reference signal optimization in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The effectiveness of L1-regularization on significant trial selection highly depends on the regularization parameter setting, which can be typically determined by cross-validation (CV). However, CV will substantially reduce the practicability of BCI system due to additional data requirement for the parameter validation and relatively high computational cost. To solve the problem, this study proposes a Bayesian version of L1-MCCA (called SBMCCA) by exploiting sparse Bayesian learning. The SBMCCA method avoids CV and can efficiently estimate the model parameters under the Bayesian evidence framework. Experimental results show that the SBMCCA method achieved comparable recognition accuracy but much higher computational efficiency in contrast to the L1-MCCA method.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [21] MINIMAX ESTIMATION IN SPARSE CANONICAL CORRELATION ANALYSIS
    Gao, Chao
    Ma, Zongming
    Ren, Zhao
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2015, 43 (05): : 2168 - 2197
  • [22] DNA pattern recognition using canonical correlation algorithm
    Sarkar, B. K.
    Chakraborty, Chiranjib
    JOURNAL OF BIOSCIENCES, 2015, 40 (04) : 709 - 719
  • [23] DNA pattern recognition using canonical correlation algorithm
    B K Sarkar
    Chiranjib Chakraborty
    Journal of Biosciences, 2015, 40 : 709 - 719
  • [24] Variational Bayesian approach to canonical correlation analysis
    Wang, Chong
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (03): : 905 - 910
  • [25] METHOD IN PATTERN RECOGNITION AND CORRELATION ANALYSIS - EEG WAVES AND OTHER BIOELECTRIC POTENTIALS
    KNOLL, O
    SPECKMAN.EJ
    CASPERS, H
    EEG-EMG-ZEITSCHRIFT FUR ELEKTROENZEPHALOGRAPHIE ELEKTROMYOGRAPHIE UND VERWANDTE GEBIETE, 1974, 5 (04): : 199 - 205
  • [26] Minimax Quasi-Bayesian Estimation in Sparse Canonical Correlation Analysis via a Rayleigh Quotient Function
    Zhu, Qiuyun
    Atchade, Yves
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [27] Comparison of penalty functions for sparse canonical correlation analysis
    Chalise, Prabhakar
    Fridley, Brooke L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) : 245 - 254
  • [28] A Mathematical Programming Approach to Sparse Canonical Correlation Analysis
    Amorosi, Lavinia
    Padellini, Tullia
    Puerto, Justo
    Valverde, Carlos
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [29] IMAGING GENETICS VIA SPARSE CANONICAL CORRELATION ANALYSIS
    Chi, Eric C.
    Allen, Genevera I.
    Zhou, Hua
    Kohannim, Omid
    Lange, Kenneth
    Thompson, Paul M.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 740 - 743
  • [30] Canonical sparse cross-view correlation analysis
    Zu, Chen
    Zhang, Daoqiang
    NEUROCOMPUTING, 2016, 191 : 263 - 272