Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition

被引:44
|
作者
Zhang, Yu [1 ]
Zhou, Guoxu [2 ]
Jin, Jing [1 ]
Zhang, Yangsong [3 ]
Wang, Xingyu [1 ]
Cichocki, Andrzej [4 ]
机构
[1] East China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Peoples R China
[4] RIKEN Brain Sci Inst, Lab Adv Brain Signal Proc, Wako, Saitama 3510198, Japan
关键词
Brain-computer interface (BCI); Electroencephalogram (EEG); Multiway canonical correlation analysis (MCCA); Sparse Bayesian learning; Steady-state visual evoked potential (SSVEP); FREQUENCY RECOGNITION; BRAIN; CLASSIFICATION;
D O I
10.1016/j.neucom.2016.11.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
L1-regularized multiway canonical correlation analysis (L1-MCCA) has been introduced to reference signal optimization in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The effectiveness of L1-regularization on significant trial selection highly depends on the regularization parameter setting, which can be typically determined by cross-validation (CV). However, CV will substantially reduce the practicability of BCI system due to additional data requirement for the parameter validation and relatively high computational cost. To solve the problem, this study proposes a Bayesian version of L1-MCCA (called SBMCCA) by exploiting sparse Bayesian learning. The SBMCCA method avoids CV and can efficiently estimate the model parameters under the Bayesian evidence framework. Experimental results show that the SBMCCA method achieved comparable recognition accuracy but much higher computational efficiency in contrast to the L1-MCCA method.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [41] Large-Scale Sparse Kernel Canonical Correlation Analysis
    Uurtio, Viivi
    Bhadra, Sahely
    Rousu, Juho
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [42] Sparse semiparametric canonical correlation analysis for data of mixed types
    Yoon, Grace
    Carroll, Raymond J.
    Gaynanova, Irina
    BIOMETRIKA, 2020, 107 (03) : 609 - 625
  • [43] Group sparse canonical correlation analysis for genomic data integration
    Lin, Dongdong
    Zhang, Jigang
    Li, Jingyao
    Calhoun, Vince D.
    Deng, Hong-Wen
    Wang, Yu-Ping
    BMC BIOINFORMATICS, 2013, 14
  • [44] Distributed Sparse Canonical Correlation Analysis in Clustering Sensor Data
    Chen, Jia
    Schizas, Ioannis D.
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 639 - 643
  • [45] Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data
    Witten, Daniela M.
    Tibshirani, Robert J.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
  • [46] Image retrieval approach based on sparse canonical correlation analysis
    Zhuang, Ling
    Zhuang, Yue-Ting
    Wu, Jiang-Qin
    Ye, Zhen-Chao
    Wu, Fei
    Ruan Jian Xue Bao/Journal of Software, 2012, 23 (05): : 1295 - 1304
  • [47] An Improved Canonical Correlation Analysis for EEG Inter-Band Correlation Extraction
    Wang, Zishan
    Huang, Ruqiang
    Zhang, Lei
    Zhao, Shaokai
    Wang, Bei
    Jin, Jing
    Yan, Ye
    Yin, Erwei
    12TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, VOL 1, APCMBE 2023, 2024, 103 : 273 - 280
  • [48] A New Hybrid Method with Biomimetic Pattern Recognition and Sparse Representation for EEG Classification
    Ge, Yanbin
    Wu, Yan
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 212 - 217
  • [49] An Improved Canonical Correlation Analysis for EEG Inter-Band Correlation Extraction
    Wang, Zishan
    Huang, Ruqiang
    Yan, Ye
    Luo, Zhiguo
    Zhao, Shaokai
    Wang, Bei
    Jin, Jing
    Xie, Liang
    Yin, Erwei
    BIOENGINEERING-BASEL, 2023, 10 (10):
  • [50] PATTERN RECOGNITION IN EEG
    KAISER, E
    MAGNUSSON, R
    PETERSEN, I
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1969, 26 (03): : 338 - +