Sparse multiway canonical correlation analysis for multimodal stroke recovery data

被引:0
|
作者
Das, Subham [1 ]
West, Franklin D. [2 ]
Park, Cheolwoo [3 ,4 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA USA
[2] Univ Georgia, Dept Anim & Dairy Sci, Athens, GA USA
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
dimension reduction; multimodal data; multiway canonical correlation analysis; sparsity; stroke recovery; DECOMPOSITION;
D O I
10.1002/bimj.202300037
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional canonical correlation analysis (CCA) measures the association between two datasets and identifies relevant contributors. However, it encounters issues with execution and interpretation when the sample size is smaller than the number of variables or there are more than two datasets. Our motivating example is a stroke-related clinical study on pigs. The data are multimodal and consist of measurements taken at multiple time points and have many more variables than observations. This study aims to uncover important biomarkers and stroke recovery patterns based on physiological changes. To address the issues in the data, we develop two sparse CCA methods for multiple datasets. Various simulated examples are used to illustrate and contrast the performance of the proposed methods with that of the existing methods. In analyzing the pig stroke data, we apply the proposed sparse CCA methods along with dimension reduction techniques, interpret the recovery patterns, and identify influential variables in recovery.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multiway canonical correlation analysis of brain data
    de Cheveigne, Alain
    Di Liberto, Giovanni M.
    Arzounian, Dorothee
    Wong, Daniel D. E.
    Hjortkjaer, Jens
    Fuglsang, Soren
    Parra, Lucas C.
    NEUROIMAGE, 2019, 186 : 728 - 740
  • [2] Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition
    Zhang, Yu
    Zhou, Guoxu
    Jin, Jing
    Zhang, Yangsong
    Wang, Xingyu
    Cichocki, Andrzej
    NEUROCOMPUTING, 2017, 225 : 103 - 110
  • [3] Multiway generalized canonical correlation analysis
    Gloaguen, Arnaud
    Philippe, Cathy
    Frouin, Vincent
    Gennari, Giulia
    Dehaene-Lambertz, Ghislaine
    Le Brusquet, Laurent
    Tenenhaus, Arthur
    BIOSTATISTICS, 2022, 23 (01) : 240 - 256
  • [4] Sparse canonical correlation analysis
    David R. Hardoon
    John Shawe-Taylor
    Machine Learning, 2011, 83 : 331 - 353
  • [5] Sparse canonical correlation analysis
    Hardoon, David R.
    Shawe-Taylor, John
    MACHINE LEARNING, 2011, 83 (03) : 331 - 353
  • [6] Canonical Correlation Analysis for Data Fusion in Multimodal Emotion Recognition
    Nemati, Shahla
    2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 676 - 681
  • [7] Sparse Canonical Correlation Analysis with Application to Genomic Data Integration
    Parkhomenko, Elena
    Tritchler, David
    Beyene, Joseph
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
  • [8] Group sparse canonical correlation analysis for genomic data integration
    Lin, Dongdong
    Zhang, Jigang
    Li, Jingyao
    Calhoun, Vince D.
    Deng, Hong-Wen
    Wang, Yu-Ping
    BMC BIOINFORMATICS, 2013, 14
  • [9] Group sparse canonical correlation analysis for genomic data integration
    Dongdong Lin
    Jigang Zhang
    Jingyao Li
    Vince D Calhoun
    Hong-Wen Deng
    Yu-Ping Wang
    BMC Bioinformatics, 14
  • [10] Sparse semiparametric canonical correlation analysis for data of mixed types
    Yoon, Grace
    Carroll, Raymond J.
    Gaynanova, Irina
    BIOMETRIKA, 2020, 107 (03) : 609 - 625