Improving Prediction Intervals: Some Elementary Methods

被引:3
|
作者
Yu, Keming [1 ]
Ally, Abdallah [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
来源
AMERICAN STATISTICIAN | 2009年 / 63卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Coverage accuracy; Distribution transformation; Prediction intervals; LIKELIHOOD;
D O I
10.1198/tast.2009.0003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the problem of constructing prediction intervals for predicting future values of a random variable drawn from a sampled distribution. Two elementary prediction interval calibration methods are proposed to improve the coverage accuracy of prediction intervals. One uses the Box-Cox normal transformation to derive exact prediction intervals, whereas the other suggests an exponential distribution transformation to provide prediction intervals with zero coverage error. Both methods are shown to attain very accurate coverage via numerical comparison Studies.
引用
收藏
页码:17 / 19
页数:3
相关论文
共 50 条