Improving the convergence of some boundary element methods

被引:0
|
作者
Brandts, JH [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
Galerkin boundary element method; qualocation; superconvergence; iterated finite element solution; adaptive refinement;
D O I
10.1016/S0378-4754(99)00067-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We will discuss three possibilities of how to improve the approximation quality of boundary element approximations for integral equations of the first kind on smooth planar curves. First we comment on iterated finite element solutions, then on reduced integration techniques resulting in so-called qualocation methods. As a third option we present post-processing based on a recent superconvergence result of the author. For this last approach we present numerical experiments in the context of adaptive refinement. (C) 1999 IMACS/Elsevier Science B.V. All rights reserved.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条
  • [1] POINTWISE CONVERGENCE OF SOME BOUNDARY ELEMENT METHODS .2.
    RANNACHER, R
    WENDLAND, WL
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1988, 22 (02): : 343 - 362
  • [2] CONVERGENCE OF ADAPTIVE BOUNDARY ELEMENT METHODS
    Carstensen, Carsten
    Praetorius, Dirk
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2012, 24 (01) : 1 - 23
  • [3] Convergence of vortex with boundary element methods
    Zhang, PW
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (02) : 127 - 137
  • [4] ASYMPTOTIC CONVERGENCE OF BOUNDARY ELEMENT METHODS
    WENDLAND, WL
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (05): : T397 - T400
  • [5] CONVERGENCE OF VORTEX WITH BOUNDARY ELEMENT METHODS
    P.W. Zhang(Department of Mathematics
    [J]. Journal of Computational Mathematics, 1997, (02) : 127 - 137
  • [6] Adaptive boundary element methods with convergence rates
    Gantumur, Tsogtgerel
    [J]. NUMERISCHE MATHEMATIK, 2013, 124 (03) : 471 - 516
  • [7] Adaptive boundary element methods with convergence rates
    Tsogtgerel Gantumur
    [J]. Numerische Mathematik, 2013, 124 : 471 - 516
  • [8] Improving boundary element methods for parasitic extraction
    Shu, Y
    Liu, JG
    Shi, WP
    [J]. ASP-DAC 2003: PROCEEDINGS OF THE ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, 2003, : 261 - 267
  • [9] Convergence of the domain decomposition finite element-boundary element coupling methods
    El-Gebeily, M
    Elleithy, WM
    Al-Gahtani, HJ
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (43) : 4851 - 4867
  • [10] Adaptive boundary element methods for optimal convergence of point errors
    Feischl, Michael
    Gantner, Gregor
    Haberl, Alexander
    Praetorius, Dirk
    Fuehrer, Thomas
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (03) : 541 - 567