CONVERGENCE OF VORTEX WITH BOUNDARY ELEMENT METHODS

被引:0
|
作者
P.W. Zhang(Department of Mathematics
机构
关键词
Math; CONVERGENCE OF VORTEX WITH BOUNDARY ELEMENT METHODS; Zhang;
D O I
暂无
中图分类号
O357 [粘性流体力学];
学科分类号
080103 ; 080704 ;
摘要
In this work, the vortex methods for Euler equations with initial boundary value problem is considered, Poisson equations are solved using boundary element methods which can be seen to require less operations to compute the velocity field from the vorticity by Chorin[6]. We prove that the rate of convergence of the boundary element schemes can be independent of the vortex blob parameters.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 50 条
  • [1] Convergence of vortex with boundary element methods
    Zhang, PW
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (02) : 127 - 137
  • [2] CONVERGENCE OF ADAPTIVE BOUNDARY ELEMENT METHODS
    Carstensen, Carsten
    Praetorius, Dirk
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2012, 24 (01) : 1 - 23
  • [3] ASYMPTOTIC CONVERGENCE OF BOUNDARY ELEMENT METHODS
    WENDLAND, WL
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (05): : T397 - T400
  • [4] Convergence of Vortex Methods for Initial Boundary Value Problems
    应隆安
    [J]. 数学进展, 1991, (01) : 86 - 102
  • [5] Adaptive boundary element methods with convergence rates
    Gantumur, Tsogtgerel
    [J]. NUMERISCHE MATHEMATIK, 2013, 124 (03) : 471 - 516
  • [6] Improving the convergence of some boundary element methods
    Brandts, JH
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 145 - 152
  • [7] Adaptive boundary element methods with convergence rates
    Tsogtgerel Gantumur
    [J]. Numerische Mathematik, 2013, 124 : 471 - 516
  • [8] Convergence of the domain decomposition finite element-boundary element coupling methods
    El-Gebeily, M
    Elleithy, WM
    Al-Gahtani, HJ
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (43) : 4851 - 4867
  • [9] Adaptive boundary element methods for optimal convergence of point errors
    Feischl, Michael
    Gantner, Gregor
    Haberl, Alexander
    Praetorius, Dirk
    Fuehrer, Thomas
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (03) : 541 - 567
  • [10] Adaptive boundary element methods for optimal convergence of point errors
    Michael Feischl
    Gregor Gantner
    Alexander Haberl
    Dirk Praetorius
    Thomas Führer
    [J]. Numerische Mathematik, 2016, 132 : 541 - 567