CONVERGENCE OF ADAPTIVE BOUNDARY ELEMENT METHODS

被引:5
|
作者
Carstensen, Carsten [1 ,2 ]
Praetorius, Dirk [3 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
[3] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
POSTERIORI ERROR ESTIMATE; INTEGRAL-EQUATIONS; AVERAGING TECHNIQUES; 2-LEVEL METHODS; WAVELET METHODS; SURFACES;
D O I
10.1216/JIE-2012-24-1-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many applications, adaptive mesh-refinement is observed to be an efficient tool for the numerical solution of partial differential equations and integral equations. Convergence of adaptive schemes to the correct solution, however, is so far only understood for certain kind of differential equations. In general, it cannot be excluded that the adaptive algorithm computes a convergent sequence of discrete approximations with a limit which is not the correct solution. This work proposes a feedback loop which guarantees the convergence of the computed discrete approximations to the correct solution. Although stated for Symm's integral equation of the first kind, the main part of this work is written for a general audience in the context of weak forms as Riesz representations in Hilbert spaces. Numerical examples illustrate the adaptive strategies.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] Adaptive boundary element methods with convergence rates
    Tsogtgerel Gantumur
    [J]. Numerische Mathematik, 2013, 124 : 471 - 516
  • [2] Adaptive boundary element methods with convergence rates
    Gantumur, Tsogtgerel
    [J]. NUMERISCHE MATHEMATIK, 2013, 124 (03) : 471 - 516
  • [3] Adaptive boundary element methods for optimal convergence of point errors
    Michael Feischl
    Gregor Gantner
    Alexander Haberl
    Dirk Praetorius
    Thomas Führer
    [J]. Numerische Mathematik, 2016, 132 : 541 - 567
  • [4] Adaptive boundary element methods for optimal convergence of point errors
    Feischl, Michael
    Gantner, Gregor
    Haberl, Alexander
    Praetorius, Dirk
    Fuehrer, Thomas
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (03) : 541 - 567
  • [5] Convergence of vortex with boundary element methods
    Zhang, PW
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (02) : 127 - 137
  • [6] ASYMPTOTIC CONVERGENCE OF BOUNDARY ELEMENT METHODS
    WENDLAND, WL
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1984, 64 (05): : T397 - T400
  • [7] CONVERGENCE OF VORTEX WITH BOUNDARY ELEMENT METHODS
    P.W. Zhang(Department of Mathematics
    [J]. Journal of Computational Mathematics, 1997, (02) : 127 - 137
  • [8] Adaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
    Feischl, Michael
    Fuehrer, Thomas
    Heuer, Norbert
    Karkulik, Michael
    Praetorius, Dirk
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (03) : 309 - 389
  • [9] Improving the convergence of some boundary element methods
    Brandts, JH
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 145 - 152
  • [10] ON ADAPTIVE WAVELET BOUNDARY ELEMENT METHODS
    Harbrecht, H.
    Utzinger, M.
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (01) : 90 - 109