Improving Prediction Intervals: Some Elementary Methods

被引:3
|
作者
Yu, Keming [1 ]
Ally, Abdallah [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
来源
AMERICAN STATISTICIAN | 2009年 / 63卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Coverage accuracy; Distribution transformation; Prediction intervals; LIKELIHOOD;
D O I
10.1198/tast.2009.0003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the problem of constructing prediction intervals for predicting future values of a random variable drawn from a sampled distribution. Two elementary prediction interval calibration methods are proposed to improve the coverage accuracy of prediction intervals. One uses the Box-Cox normal transformation to derive exact prediction intervals, whereas the other suggests an exponential distribution transformation to provide prediction intervals with zero coverage error. Both methods are shown to attain very accurate coverage via numerical comparison Studies.
引用
收藏
页码:17 / 19
页数:3
相关论文
共 50 条
  • [21] Prediction intervals for GLMs, GAMs, and some survival regression models
    Olive, David J.
    Rathnayake, Rasanji C.
    Haile, Mulubrhan G.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (22) : 8012 - 8026
  • [22] Confidence intervals for prediction intervals
    Wilcox, RR
    [J]. JOURNAL OF APPLIED STATISTICS, 2006, 33 (03) : 317 - 326
  • [23] The use of collective methods for improving the generalizing ability of prediction methods
    Sen'ko, O. V.
    [J]. DOKLADY MATHEMATICS, 2006, 74 (03) : 893 - 895
  • [24] The use of collective methods for improving the generalizing ability of prediction methods
    O. V. Sen’ko
    [J]. Doklady Mathematics, 2006, 74 : 893 - 895
  • [25] Improving Clinical Prediction Model Methods Reply
    Parent, Eric
    Campbell, Kristyn E.
    Crumback, Daniel J.
    Hebert, Jacqueline S.
    [J]. MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2022, 54 (04) : 694 - 695
  • [26] Methods for improving the efficiency of numerical noise prediction
    Herrin, DW
    Seybert, AF
    Hu, TM
    [J]. IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 1758 - 1762
  • [27] Improving Flood Prediction with Deep Learning Methods
    Nayak M.
    Das S.
    Senapati M.R.
    [J]. Journal of The Institution of Engineers (India): Series B, 2022, 103 (04) : 1189 - 1205
  • [28] Improving Evolutionary Algorithms by Enhancing an Approximative Fitness Function through Prediction Intervals
    Plump, Christina
    Berger, Bernhard J.
    Drechsler, Rolf
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 127 - 135
  • [29] PREDICTION PROPERTIES OF SOME EXTRAPOLATION METHODS
    BREZINSKI, C
    [J]. APPLIED NUMERICAL MATHEMATICS, 1985, 1 (06) : 457 - 462
  • [30] SOME NUMERICAL METHODS OF TIDAL PREDICTION
    LENNON, GW
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (1-3): : 373 - &