The six-vertex model on random lattices

被引:21
|
作者
Zinn-Justin, P [1 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
来源
EUROPHYSICS LETTERS | 2000年 / 50卷 / 01期
关键词
D O I
10.1209/epl/i2000-00229-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter, the 6-vertex model on dynamical random lattices is defined via a matrix model and rewritten (following I. Kostov) as a deformation of the O(2) model. In the large-N planar limit, an exact solution is found at criticality. The critical exponents of the model are determined; they vary continuously along the critical line. The vicinity of the latter is explored, which confirms that we have a line of c = 1 conformal field theories coupled to gravity.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [31] On the Yang-Baxter equation for the six-vertex model
    Mangazeev, Vladimir V.
    [J]. NUCLEAR PHYSICS B, 2014, 882 : 70 - 96
  • [32] An Ising-type formulation of the six-vertex model
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    [J]. arXiv, 2022,
  • [33] Integrable equations for the partition function of the six-vertex model
    Izergin A.G.
    Karjalainen E.
    Kitanin N.A.
    [J]. Journal of Mathematical Sciences, 2000, 100 (2) : 2141 - 2146
  • [34] The six-vertex model and deformations of the Weyl character formula
    Brubaker, Ben
    Schultz, Andrew
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 917 - 958
  • [35] On the correlation functions of the domain wall six-vertex model
    Foda, O
    Preston, I
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [36] An Ising-type formulation of the six-vertex model
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    [J]. NUCLEAR PHYSICS B, 2023, 986
  • [37] CURRENT FLUCTUATIONS OF THE STATIONARY ASEP AND SIX-VERTEX MODEL
    Aggarwal, Amol
    [J]. DUKE MATHEMATICAL JOURNAL, 2018, 167 (02) : 269 - 384
  • [38] General scalar products in the arbitrary six-vertex model
    Ribeiro, G. A. P.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [39] A STOCHASTIC TELEGRAPH EQUATION FROM THE SIX-VERTEX MODEL
    Borodin, Alexei
    Gorin, Vadim
    [J]. ANNALS OF PROBABILITY, 2019, 47 (06): : 4137 - 4194
  • [40] Finite size scaling in the dimer and six-vertex model
    Belov, P. A.
    Enin, A. I.
    Nazarov, A. A.
    [J]. INTERNATIONAL CONFERENCE PHYSICA.SPB/2018, 2018, 1135