General scalar products in the arbitrary six-vertex model

被引:1
|
作者
Ribeiro, G. A. P. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
algebraic structures of integrable models; quantum integrability (Bethe ansatz); ALGEBRAIC BETHE-ANSATZ; CHAIN;
D O I
10.1088/1742-5468/2011/11/P11015
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work we use the algebraic Bethe ansatz to derive the general scalar product in the asymmetric six-vertex model for generic Boltzmann weights. We performed this calculation using only the unitarity property, the Yang-Baxter algebra and the Yang-Baxter equation. We have derived a recurrence relation for the scalar product. The solution of this relation was written in terms of the domain wall partition functions. In turn, these partition functions were also obtained for generic Boltzmann weights, which provided us with an explicit expression for the general scalar product.
引用
收藏
页数:16
相关论文
共 50 条
  • [2] Convergence of the Stochastic Six-Vertex Model to the ASEPStochastic Six-Vertex Model and ASEP
    Amol Aggarwal
    [J]. Mathematical Physics, Analysis and Geometry, 2017, 20
  • [3] STOCHASTIC SIX-VERTEX MODEL
    Borodin, Alexei
    Corwin, Ivan
    Gorin, Vadim
    [J]. DUKE MATHEMATICAL JOURNAL, 2016, 165 (03) : 563 - 624
  • [4] On Delocalization in the Six-Vertex Model
    Lis, Marcin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 1181 - 1205
  • [5] On Delocalization in the Six-Vertex Model
    Marcin Lis
    [J]. Communications in Mathematical Physics, 2021, 383 : 1181 - 1205
  • [6] The six-vertex model on random lattices
    Zinn-Justin, P
    [J]. EUROPHYSICS LETTERS, 2000, 50 (01): : 15 - 21
  • [7] Six-vertex model with an frustrated impurity
    Hara, Y
    Hatano, N
    Suzuki, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) : 3048 - 3052
  • [8] Complexity classification of the six-vertex model
    Cai, Jin-Yi
    Fu, Zhiguo
    Xia, Mingji
    [J]. INFORMATION AND COMPUTATION, 2018, 259 : 130 - 141
  • [9] Symmetry relations for the six-vertex model
    Watson, GI
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (5-6) : 1045 - 1054
  • [10] Boundary polarization in the six-vertex model
    Bogoliubov, NM
    Kitaev, AV
    Zvonarev, MB
    [J]. PHYSICAL REVIEW E, 2002, 65 (02):