An Ising-type formulation of the six-vertex model

被引:0
|
作者
Bazhanov, Vladimir V. [1 ]
Sergeev, Sergey M. [1 ]
机构
[1] Department of Fundamental and Theoretical Physics, Research School of Physics, Australian National University, Canberra,ACT,2601, Australia
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Eigenvalues and eigenfunctions - Statistical mechanics - Transfer matrix method
引用
收藏
相关论文
共 50 条
  • [1] An Ising-type formulation of the six-vertex model
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    NUCLEAR PHYSICS B, 2023, 986
  • [2] Vertex type fractions of the six-vertex model at Δ = -1
    Takagi, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) : 2653 - 2657
  • [3] Convergence of the Stochastic Six-Vertex Model to the ASEPStochastic Six-Vertex Model and ASEP
    Amol Aggarwal
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [4] On Delocalization in the Six-Vertex Model
    Lis, Marcin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 1181 - 1205
  • [5] STOCHASTIC SIX-VERTEX MODEL
    Borodin, Alexei
    Corwin, Ivan
    Gorin, Vadim
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (03) : 563 - 624
  • [6] On Delocalization in the Six-Vertex Model
    Marcin Lis
    Communications in Mathematical Physics, 2021, 383 : 1181 - 1205
  • [7] The six-vertex model on random lattices
    Zinn-Justin, P
    EUROPHYSICS LETTERS, 2000, 50 (01): : 15 - 21
  • [8] Six-vertex model with an frustrated impurity
    Hara, Y
    Hatano, N
    Suzuki, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) : 3048 - 3052
  • [9] Symmetry relations for the six-vertex model
    Watson, GI
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (5-6) : 1045 - 1054
  • [10] Boundary polarization in the six-vertex model
    Bogoliubov, NM
    Kitaev, AV
    Zvonarev, MB
    PHYSICAL REVIEW E, 2002, 65 (02):