From Permutation Points to Permutation Cubics*

被引:0
|
作者
Odehnal, Boris [1 ]
机构
[1] Univ Appl Arts Vienna, Vienna, Austria
来源
JOURNAL FOR GEOMETRY AND GRAPHICS | 2022年 / 26卷 / 02期
关键词
permutation point; triangle cubic; permutation cubic; triangle center; antiorthic axis; Mandart circumellipse;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trilinear coordinates of a point V in the plane of a triangle can be permuted in six ways which yields the six permutation points of V. These six points always lie on a single conic, called the permutation conic. A natural variant or generalization seems to be: The six permutation points of V together with the six permutation points of V 's image under a certain quadratic Cremona transformation. comprise a set of twelve points that always lie on a single cubic which we shall call the permutation cubic of V with respect to.. In the present paper we shall discuss especially the cases where. is the isogonal or the isotomic conjugation. Properties and remarkable features of these cubics shall be elaborated.
引用
收藏
页码:253 / 269
页数:17
相关论文
共 50 条
  • [41] On maximal permutation BH - ideals of Permutation BH - Algebras
    Alsalem, Shuker
    Al Musawi, Abu Firas
    Suleiman, Enoch
    2022 7TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND INDUSTRY, MCSI, 2022, : 40 - 45
  • [42] MVPA Permutation Schemes: Permutation Testing for the Group Level
    Etzel, Joset A.
    2015 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI) 2015, 2015, : 65 - 68
  • [43] Stable characters from permutation patterns
    Gaetz, Christian
    Ryba, Christopher
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [44] PERMUTATION FUNCTIONS ARISING FROM INTERPOLATIONS
    Jeong, Sangtae
    Lee, Hyeonok
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 24 (02): : 171 - 180
  • [45] From spinning primaries to permutation orbifolds
    Robert de Mello Koch
    Phumudzo Rabambi
    Hendrik J. R. Van Zyl
    Journal of High Energy Physics, 2018
  • [46] Constructing permutation arrays from groups
    Sergey Bereg
    Avi Levy
    I. Hal Sudborough
    Designs, Codes and Cryptography, 2018, 86 : 1095 - 1111
  • [47] Permutation polynomials from piecewise functions
    Yuan, Pingzhi
    Zheng, Yanbin
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 35 : 215 - 230
  • [48] Stable characters from permutation patterns
    Christian Gaetz
    Christopher Ryba
    Selecta Mathematica, 2021, 27
  • [49] From spinning primaries to permutation orbifolds
    Koch, Robert de Mello
    Rabambi, Phumudzo
    van Zyl, Hendrik J. R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [50] Constructing permutation arrays from groups
    Bereg, Sergey
    Levy, Avi
    Sudborough, I. Hal
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (05) : 1095 - 1111