From spinning primaries to permutation orbifolds

被引:5
|
作者
Koch, Robert de Mello [1 ,2 ,3 ]
Rabambi, Phumudzo [2 ,3 ]
van Zyl, Hendrik J. R. [2 ,3 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Witwatersrand, Natl Inst Theoret Phys, Sch Phys, ZA-2050 Johannesburg, South Africa
[3] Univ Witwatersrand, Mandelstam Inst Theoret Phys, ZA-2050 Johannesburg, South Africa
来源
基金
新加坡国家研究基金会;
关键词
AdS-CFT Correspondence; Conformal Field Theory; Duality in Gauge Field Theories;
D O I
10.1007/JHEP04(2018)104
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We carry out a systematic study of primary operators in the conformal field theory of a free Weyl fermion. Using SO(4, 2) characters we develop counting formulas for primaries constructed using a fixed number of fermion fields. By specializing to particular classes of primaries, we derive very explicit formulas giving the generating functions for the number of primaries in these classes. We present a duality map between primary operators in the fermion field theory and polynomial functions. This allows us to construct the primaries that were counted. Next we show that these classes of primary fields correspond to polynomial functions on certain permutation orbifolds. These orbifolds have palindromic Hilbert series.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] From spinning primaries to permutation orbifolds
    Robert de Mello Koch
    Phumudzo Rabambi
    Hendrik J. R. Van Zyl
    Journal of High Energy Physics, 2018
  • [2] Complexity from spinning primaries
    Koch, Robert de Mello
    Kim, Minkyoo
    Van Zyl, Hendrik J. R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [3] Complexity from spinning primaries
    Robert de Mello Koch
    Minkyoo Kim
    Hendrik J. R. Van Zyl
    Journal of High Energy Physics, 2021
  • [4] Permutation orbifolds
    Bantay, P
    NUCLEAR PHYSICS B, 2002, 633 (03) : 365 - 378
  • [5] Permutation orbifolds and chaos
    Belin, Alexandre
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [6] Permutation orbifolds and holography
    Haehl, Felix M.
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (03):
  • [7] Permutation orbifolds and holography
    Felix M. Haehl
    Mukund Rangamani
    Journal of High Energy Physics, 2015
  • [8] Permutation orbifolds and chaos
    Alexandre Belin
    Journal of High Energy Physics, 2017
  • [9] The spectrum of permutation orbifolds
    Keller, Christoph A.
    Muhlmann, Beatrix J.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1559 - 1572
  • [10] The spectrum of permutation orbifolds
    Christoph A. Keller
    Beatrix J. Mühlmann
    Letters in Mathematical Physics, 2019, 109 : 1559 - 1572