From Permutation Points to Permutation Cubics*

被引:0
|
作者
Odehnal, Boris [1 ]
机构
[1] Univ Appl Arts Vienna, Vienna, Austria
来源
JOURNAL FOR GEOMETRY AND GRAPHICS | 2022年 / 26卷 / 02期
关键词
permutation point; triangle cubic; permutation cubic; triangle center; antiorthic axis; Mandart circumellipse;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trilinear coordinates of a point V in the plane of a triangle can be permuted in six ways which yields the six permutation points of V. These six points always lie on a single conic, called the permutation conic. A natural variant or generalization seems to be: The six permutation points of V together with the six permutation points of V 's image under a certain quadratic Cremona transformation. comprise a set of twelve points that always lie on a single cubic which we shall call the permutation cubic of V with respect to.. In the present paper we shall discuss especially the cases where. is the isogonal or the isotomic conjugation. Properties and remarkable features of these cubics shall be elaborated.
引用
收藏
页码:253 / 269
页数:17
相关论文
共 50 条
  • [21] Permutation reconstruction from minors
    Raykova, Mariana
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [22] ARRAY PERMUTATION BY INDEX-DIGIT PERMUTATION
    FRASER, D
    JOURNAL OF THE ACM, 1976, 23 (02) : 298 - 309
  • [23] PERMUTATION POLYNOMIALS AND PRIMITIVE PERMUTATION-GROUPS
    COHEN, SD
    ARCHIV DER MATHEMATIK, 1991, 57 (05) : 417 - 423
  • [24] Permutation polytopes and indecomposable elements in permutation groups
    Guralnick, Robert M.
    Perkinson, David
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1243 - 1256
  • [25] PERMUTATION ENUMERATION - 4 NEW PERMUTATION ALGORITHMS
    IVES, FM
    COMMUNICATIONS OF THE ACM, 1976, 19 (02) : 68 - 72
  • [26] Permutation Tests Using Arbitrary Permutation Distributions
    Aaditya Ramdas
    Rina Foygel Barber
    Emmanuel J. Candès
    Ryan J. Tibshirani
    Sankhya A, 2023, 85 : 1156 - 1177
  • [27] On Permutation Upper and Transitive Permutation BE-Algebras
    Alsalem, Shuker
    Al Musawi, Abu Firas
    Suleiman, Enoch
    2022 14TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS), 2022,
  • [28] Permutation complexity of the fixed points of some uniform binary morphisms
    Valyuzhenich, Alexander
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (63): : 257 - 264
  • [29] ON PERMUTATION COMPLEXITY OF FIXED POINTS OF SOME NONUNIFORM BINARY MORPHISMS
    Valuzhenich, A. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 64 - 79
  • [30] Permutation Tests Using Arbitrary Permutation Distributions
    Ramdas, Aaditya
    Barber, Rina Foygel
    Candes, Emmanuel J.
    Tibshirani, Ryan J.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (2): : 1156 - 1177