An algorithm for inverse minimum spanning tree problem

被引:31
|
作者
Zhang, JH
Xu, SJ
Ma, ZF
机构
[1] CITY UNIV HONG KONG,DEPT MATH,HONG KONG,HONG KONG
[2] RUTGERS STATE UNIV,RUTCOR,NEW BRUNSWICK,NJ 08903
[3] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
来源
OPTIMIZATION METHODS & SOFTWARE | 1997年 / 8卷 / 01期
关键词
spanning tree; inverse problem; minimum covering set; bipartite graph;
D O I
10.1080/10556789708805666
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we consider an inverse minimum spanning tree problem in which we wish to change the original weights of the edges in a graph as little as possible so that a given spanning tree of the graph can become the minimum spanning tree. An algorithm is proposed which can solve the problem in polynomial time. The algorithm is a combinatorial method that uses the minimum covering problem as its main subproblem. An example is included to illustrate the method.
引用
收藏
页码:69 / 84
页数:16
相关论文
共 50 条
  • [21] An approximation algorithm for the balanced capacitated minimum spanning tree problem
    Fallah, H.
    Didehvar, F.
    Rahmati, F.
    [J]. SCIENTIA IRANICA, 2021, 28 (03) : 1479 - 1492
  • [22] The partial inverse minimum spanning tree problem when weight increase is forbidden
    Cai, Mao-Cheng
    Duin, C. W.
    Yang, Xiaoguang
    Zhang, Jianzhong
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 188 (02) : 348 - 353
  • [23] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    [J]. INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85
  • [24] ON THE GENERALIZED MINIMUM SPANNING TREE PROBLEM
    MYUNG, YS
    LEE, CH
    TCHA, DW
    [J]. NETWORKS, 1995, 26 (04) : 231 - 241
  • [25] ON THE HISTORY OF THE MINIMUM SPANNING TREE PROBLEM
    GRAHAM, RL
    HELL, P
    [J]. ANNALS OF THE HISTORY OF COMPUTING, 1985, 7 (01): : 43 - 57
  • [26] A constrained minimum spanning tree problem
    Chen, GT
    Zhang, GC
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 867 - 875
  • [27] The minimum risk spanning tree problem
    Chen, Xujin
    Hu, Jie
    Hu, Xiaodong
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 81 - +
  • [28] The Minimum Moving Spanning Tree Problem
    Akitaya H.A.
    Biniaz A.
    Bose P.
    De Carufel J.-L.
    Maheshwari A.
    da Silveira L.F.S.X.
    Smid M.
    [J]. Journal of Graph Algorithms and Applications, 2023, 27 (01) : 1 - 18
  • [29] The Distributed Minimum Spanning Tree Problem
    Schmid, Stefan
    Pandurangan, Gopal
    Robinson, Peter
    Scquizzato, Michele
    [J]. BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2018, (125): : 51 - 80
  • [30] ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM
    HASSIN, R
    TAMIR, A
    [J]. INFORMATION PROCESSING LETTERS, 1995, 53 (02) : 109 - 111