Tensor Trains Approximation Estimates in the Chebyshev Norm

被引:5
|
作者
Osinsky, A. I. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
multidimensional arrays; nonlinear approximations; maximum volume principle;
D O I
10.1134/S096554251902012X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new elementwise bound on the cross approximation error used for approximating multi-index arrays (tensors) in the format of a tensor train is obtained. The new bound is the first known error bound that differs from the best bound by a factor that depends only on the rank of the approximation and on the dimensionality of the tensor , and the dependence on the dimensionality at a fixed rank has only the order rather than const(d). Thus, this bound justifies the use of the cross method even for high dimensional tensors.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [11] BEST APPROXIMATION ESTIMATES RESULTING FROM THE CHEBYSHEV CRITERION
    BABENKO, VF
    SHALAEV, VV
    MATHEMATICAL NOTES, 1991, 49 (3-4) : 431 - 433
  • [12] Norm estimates of the partial transpose map on the tensor products of matrices
    Ando, Tsuyoshi
    Sano, Takashi
    POSITIVITY, 2008, 12 (01) : 9 - 24
  • [13] Norm Estimates of the Partial Transpose Map on the Tensor Products of Matrices
    Tsuyoshi Ando
    Takashi Sano
    Positivity, 2008, 12 : 9 - 24
  • [14] On the Best Approximation Algorithm by Low-Rank Matrices in Chebyshev’s Norm
    N. L. Zamarashkin
    S. V. Morozov
    E. E. Tyrtyshnikov
    Computational Mathematics and Mathematical Physics, 2022, 62 : 701 - 718
  • [15] Finite Alternation Theorems and a Constructive Approach to Piecewise Polynomial Approximation in Chebyshev Norm
    Crouzeix, Jean-Pierre
    Sukhorukova, Nadezda
    Ugon, Julien
    SET-VALUED AND VARIATIONAL ANALYSIS, 2020, 28 (01) : 123 - 147
  • [16] Finite Alternation Theorems and a Constructive Approach to Piecewise Polynomial Approximation in Chebyshev Norm
    Jean-Pierre Crouzeix
    Nadezda Sukhorukova
    Julien Ugon
    Set-Valued and Variational Analysis, 2020, 28 : 123 - 147
  • [17] On the Best Approximation Algorithm by Low-Rank Matrices in Chebyshev's Norm
    Zamarashkin, N. L.
    Morozov, S., V
    Tyrtyshnikov, E. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (05) : 701 - 718
  • [18] Asymptotic estimates for approximation quantities of tensor product identities
    Carl, B
    Defant, A
    JOURNAL OF APPROXIMATION THEORY, 1997, 88 (02) : 228 - 256
  • [19] Norm estimates for functions of two operators on tensor products of Hilbert spaces
    Gil, M. I.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1129 - 1141
  • [20] Universal Gaps for XOR Games from Estimates on Tensor Norm Ratios
    Aubrun, Guillaume
    Lami, Ludovico
    Palazuelos, Carlos
    Szarek, Stanislaw J.
    Winter, Andreas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (01) : 679 - 724