Tensor Trains Approximation Estimates in the Chebyshev Norm

被引:5
|
作者
Osinsky, A. I. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
multidimensional arrays; nonlinear approximations; maximum volume principle;
D O I
10.1134/S096554251902012X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new elementwise bound on the cross approximation error used for approximating multi-index arrays (tensors) in the format of a tensor train is obtained. The new bound is the first known error bound that differs from the best bound by a factor that depends only on the rank of the approximation and on the dimensionality of the tensor , and the dependence on the dimensionality at a fixed rank has only the order rather than const(d). Thus, this bound justifies the use of the cross method even for high dimensional tensors.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [21] Universal Gaps for XOR Games from Estimates on Tensor Norm Ratios
    Guillaume Aubrun
    Ludovico Lami
    Carlos Palazuelos
    Stanisław J. Szarek
    Andreas Winter
    Communications in Mathematical Physics, 2020, 375 : 679 - 724
  • [22] Low-Rank Tensor Approximation for Chebyshev Interpolation in Parametric Option Pricing
    Glau, Kathrin
    Kressner, Daniel
    Statti, Francesco
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2020, 11 (03): : 897 - 927
  • [23] Path equipartition in the Chebyshev norm
    Liverani, M
    Morgana, A
    Simeone, B
    Storchi, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 123 (02) : 428 - 436
  • [24] ALTERNATING CHEBYSHEV APPROXIMATION
    DUNHAM, CB
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 178 (APR) : 95 - 109
  • [25] CHEBYSHEV APPROXIMATION BY EXPONENTIALS
    RICE, JR
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (01): : 149 - 161
  • [26] RATIONAL CHEBYSHEV APPROXIMATION
    WERNER, H
    STOER, J
    BOMMAS, W
    NUMERISCHE MATHEMATIK, 1967, 10 (04) : 289 - &
  • [27] Improving absolute gravity estimates by the Lp-norm approximation of the ballistic trajectory
    Nagornyi, V. D.
    Svitlov, S.
    Araya, A.
    METROLOGIA, 2016, 53 (02) : 754 - 761
  • [28] On uniqueness of Chebyshev approximation
    Fedorov, VM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (04): : 31 - 36
  • [29] BOUNDS ON THE SPECTRAL NORM AND THE NUCLEAR NORM OF A TENSOR BASED ON TENSOR PARTITIONS
    Li, Zhening
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (04) : 1440 - 1452
  • [30] Estimates of the rate of approximation in the CLT for L1-norm of density estimators
    Zaitsev, AY
    HIGH DIMENSIONAL PROBABILITY III, 2003, 55 : 255 - 292