Norm Estimates of the Partial Transpose Map on the Tensor Products of Matrices

被引:0
|
作者
Tsuyoshi Ando
Takashi Sano
机构
[1] Shiroishi-ku,Department of Mathematical Sciences, Faculty of Science
[2] Yamagata University,undefined
来源
Positivity | 2008年 / 12卷
关键词
Primary 47A80, 47A30; Secondary 15A42; Partial transpose map; norm estimate; tensor product; unitarily invariant norm; positivity; numerical radius;
D O I
暂无
中图分类号
学科分类号
摘要
We present a norm estimate for the partial transpose map Θ on the tensor product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_m \otimes M_n$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \left( \sum_k A_k \otimes B_k \right) := \sum_k A_k \otimes B_k^T$$\end{document}with respect to a unitarily invariant norm. This is related to the norm estimates of the following maps on Mm,n in terms of the spectral norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \sum_k A_k \otimes B_k$$\end{document} : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \longmapsto \sum_k A_k X B_k \quad \textrm{and} \quad X \longmapsto \sum_k A_k X B_k^T.$$\end{document}We show further that in the special case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \otimes I_n + I_m \otimes B$$\end{document} as well as AX + XB and AX + XBT those estimates are much improved and that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\| A \otimes I_n + I_m \otimes B^T \|_p = \| A \otimes I_n + I_m \otimes B \|_p$$\end{document}for certain Schatten p-norms.
引用
收藏
页码:9 / 24
页数:15
相关论文
共 50 条
  • [1] Norm estimates of the partial transpose map on the tensor products of matrices
    Ando, Tsuyoshi
    Sano, Takashi
    POSITIVITY, 2008, 12 (01) : 9 - 24
  • [2] ON POSITIVE PARTIAL TRANSPOSE MATRICES
    Gumus, Mehmet
    Liu, Jianzhen
    Raouafi, Samir
    Tam, Tin-Yau
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 256 - 264
  • [3] THERE IS NO ANALOG OF THE TRANSPOSE MAP FOR INFINITE MATRICES
    Jacobo Simon, Juan
    PUBLICACIONS MATEMATIQUES, 1997, 41 (02) : 653 - 657
  • [4] ON POSITIVE AND POSITIVE PARTIAL TRANSPOSE MATRICES
    Gumus, Ibrahim Halil
    Moradi, Hamid Reza
    Sababheh, Mohammad
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 792 - 802
  • [5] Norm estimates for functions of two operators on tensor products of Hilbert spaces
    Gil, M. I.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1129 - 1141
  • [6] Inertia of partial transpose of positive semidefinite matrices
    Liang, Yixuan
    Yan, Jiahao
    Si, Dongran
    Chen, Lin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (12)
  • [7] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Yang, Junjian
    Xu, Huan
    POSITIVITY, 2024, 28 (02)
  • [8] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Junjian Yang
    Huan Xu
    Positivity, 2024, 28
  • [9] Orlicz norm estimates for eigenvalues of matrices
    Andreas Defant
    Mieczysław Mastyło
    Carsten Michels
    Israel Journal of Mathematics, 2002, 132 : 45 - 59
  • [10] NORM ESTIMATES FOR INVERSES OF VANDERMONDE MATRICES
    GAUTSCHI, W
    NUMERISCHE MATHEMATIK, 1975, 23 (04) : 337 - 347