Inertia of partial transpose of positive semidefinite matrices

被引:0
|
作者
Liang, Yixuan [1 ,2 ]
Yan, Jiahao [1 ,2 ]
Si, Dongran [1 ,2 ]
Chen, Lin [1 ,2 ,3 ]
机构
[1] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[3] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
关键词
inertia; positive semidefinite matrix; non-positive-partial-transpose; NPT; ENTANGLEMENT;
D O I
10.1088/1751-8121/ad3056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the partial transpose of 9x9 positive semidefinite matrices do not have inertia (4,1,4) and (3,2,4) . It solves an open problem in 'LINEAR AND MULTILINEAR ALGEBRA. Changchun Feng et al, 2022'. We apply our results to construct some inertia, as well as present the list of all possible inertia of partial transpose of 12x12 positive semidefinite matrices.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Yang, Junjian
    Xu, Huan
    [J]. POSITIVITY, 2024, 28 (02)
  • [2] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Junjian Yang
    Huan Xu
    [J]. Positivity, 2024, 28
  • [3] ON POSITIVE PARTIAL TRANSPOSE MATRICES
    Gumus, Mehmet
    Liu, Jianzhen
    Raouafi, Samir
    Tam, Tin-Yau
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 256 - 264
  • [4] ON POSITIVE AND POSITIVE PARTIAL TRANSPOSE MATRICES
    Gumus, Ibrahim Halil
    Moradi, Hamid Reza
    Sababheh, Mohammad
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 792 - 802
  • [5] Semidefinite programming in the space of partial positive semidefinite matrices
    Burer, S
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2003, 14 (01) : 139 - 172
  • [6] Positive-partial-transpose-indistinguishable states via semidefinite programming
    Cosentino, Alessandro
    [J]. PHYSICAL REVIEW A, 2013, 87 (01):
  • [7] POSITIVE SEMIDEFINITE COMPLETIONS OF PARTIAL HERMITIAN MATRICES
    DANCIS, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 175 : 97 - 114
  • [8] Extreme points of the set of density matrices with positive partial transpose
    Leinaas, J. M.
    Myrheim, J.
    Ovrum, E.
    [J]. PHYSICAL REVIEW A, 2007, 76 (03):
  • [9] Inequalities on partial traces of positive semidefinite block matrices
    Fu, Xiaohui
    Lau, Pan-Shun
    Tam, Tin-Yau
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 964 - 969
  • [10] Inequalities for partial determinants of positive semidefinite block matrices
    Xu, Huan
    Fu, Xiaohui
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (03): : 379 - 388