Quantum corrected drift-diffusion modeling and simulation of tunneling effects in nanoscale semiconductor devices

被引:0
|
作者
Cassano, G. [1 ]
de Falco, C. [2 ]
Giulianetti, C. [1 ]
Sacco, R. [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, Via Bonardi 9, I-20133 Milan, Italy
[2] Universita degli Studi Milano, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this communication, we deal with the numerical approximation of a Quantum Drift-Diffusion model capable of describing tunneling effects through the thin oxide barrier in nanoscale semiconductor devices. We propose a novel formulation of the mathematical model, based on a spatially heterogeneous approach, and a generalization of the Gummel decoupled algorithm, widely adopted in the case of the Drift-Diffusion system. Then, we address the finite element discretization of the linearized problems obtained after decoupling, proving well-posedness and a discrete maximum principle for each of them. Finally, we validate the physical accuracy and numerical stability of the proposed algorithms on the numerical simulation of a real-life nanoscale device.
引用
收藏
页码:301 / +
页数:5
相关论文
共 50 条
  • [31] Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors
    Aritra Acharyya
    Jayabrata Goswami
    Suranjana Banerjee
    J. P. Banerjee
    Journal of Computational Electronics, 2015, 14 : 309 - 320
  • [32] Modeling of drift-diffusion systems
    Holger Stephan
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 33 - 53
  • [33] Modeling of drift-diffusion systems
    Stephan, Holger
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (01): : 33 - 53
  • [34] Drift-diffusion simulation of S-shaped current-voltage relations for organic semiconductor devices
    Duy Hai Doan
    Fischer, Axel
    Fuhrmann, Juergen
    Glitzky, Annegret
    Liero, Matthias
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (03) : 1164 - 1174
  • [35] A coupled Schrodinger drift-diffusion model for quantum semiconductor device simulations
    Degond, P
    El Ayyadi, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) : 222 - 259
  • [36] Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices
    Altazin, S.
    Kirsch, C.
    Knapp, E.
    Stous, A.
    Ruhstaller, B.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (13)
  • [37] Drift-Diffusion Modeling and Simulation of Four Terminal Ballistic Rectifier
    Garg, A.
    Jain, N.
    Singh, A. K.
    2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 1995 - 1998
  • [38] Code for the 3D simulation of nanoscale semiconductor devices, including drift-diffusion and ballistic transport in 1D and 2D subbands, and 3D tunneling
    Fiori G.
    Iannaccone G.
    Journal of Computational Electronics, 2005, 4 (1-2) : 63 - 66
  • [39] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    Liu YunXian
    Shu Chi-Wang
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (01) : 115 - 140
  • [40] Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices
    YunXian Liu
    Chi-Wang Shu
    Science China Mathematics, 2016, 59 : 115 - 140