Quantum corrected drift-diffusion modeling and simulation of tunneling effects in nanoscale semiconductor devices

被引:0
|
作者
Cassano, G. [1 ]
de Falco, C. [2 ]
Giulianetti, C. [1 ]
Sacco, R. [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, Via Bonardi 9, I-20133 Milan, Italy
[2] Universita degli Studi Milano, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this communication, we deal with the numerical approximation of a Quantum Drift-Diffusion model capable of describing tunneling effects through the thin oxide barrier in nanoscale semiconductor devices. We propose a novel formulation of the mathematical model, based on a spatially heterogeneous approach, and a generalization of the Gummel decoupled algorithm, widely adopted in the case of the Drift-Diffusion system. Then, we address the finite element discretization of the linearized problems obtained after decoupling, proving well-posedness and a discrete maximum principle for each of them. Finally, we validate the physical accuracy and numerical stability of the proposed algorithms on the numerical simulation of a real-life nanoscale device.
引用
收藏
页码:301 / +
页数:5
相关论文
共 50 条
  • [21] Density Gradient Based Quantum-Corrected 3D Drift-Diffusion Simulator for Nanoscale MOSFETs
    Dutta, Tapas
    Medina-Bailon, Cristina
    Xeni, Nikolas
    Georgiev, Vihar P.
    Asenov, Asen
    2021 IEEE 16TH NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC 2021), 2021,
  • [22] Numerical methods for a quantum drift-diffusion equation in semiconductor physics
    Escobedo, Ramon
    Bonilla, Luis L.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (01) : 3 - 13
  • [23] Quantum drift-diffusion modeling of spin transport in nanostructures
    Barletti, Luigi
    Mehats, Florian
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [24] Transient quantum drift-diffusion modelling of resonant tunneling heterostructure nanodevices
    Radulovic, N
    Willatzen, M
    Melnik, RVN
    Physics of Semiconductors, Pts A and B, 2005, 772 : 1485 - 1486
  • [25] Existence of stationary solutions to an energy drift-diffusion model for semiconductor devices
    Fang, WF
    Ito, K
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (05): : 827 - 840
  • [26] QUESTIONABILITY OF DRIFT-DIFFUSION TRANSPORT IN ANALYSIS OF SMALL SEMICONDUCTOR-DEVICES
    ROHR, P
    LINDHOLM, FA
    ALLEN, KR
    SOLID-STATE ELECTRONICS, 1974, 17 (07) : 729 - 734
  • [27] Drift-Diffusion Simulation of High-Speed Optoelectronic Devices
    Pisarenko, Ivan
    Ryndin, Eugeny
    ELECTRONICS, 2019, 8 (01)
  • [28] Fundamental Aspects of Semiconductor Device Modeling Associated With Discrete Impurities: Drift-Diffusion Simulation Scheme
    Sano, Nobuyuki
    Yoshida, Katsuhisa
    Tsukahara, Kohei
    Park, Gyutae
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (08) : 3323 - 3328
  • [29] Challenges in Drift-Diffusion Semiconductor Simulations
    Farrell, Patricio
    Peschka, Dirk
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 615 - 623
  • [30] Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors
    Acharyya, Aritra
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (01) : 309 - 320