A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number

被引:1
|
作者
He, Chang-Xiang [1 ]
Zhou, Min [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Graph spectra; Signless Laplacian; Least eigenvalue;
D O I
10.1007/s00373-013-1330-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a sharp upper bound for the least signless Laplacian eigenvalue of a graph involving its domination number. Moreover, we determine some extremal graphs which attain the sharp bound.
引用
收藏
页码:1183 / 1192
页数:10
相关论文
共 50 条
  • [21] The least signless Laplacian eigenvalue of non-bipartite graphs with given stability number
    Wen, Qin
    Zhao, Qin
    Liu, Huiqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 476 : 148 - 158
  • [22] Domination number and Laplacian eigenvalue of trees
    Xue, Jie
    Liu, Ruifang
    Yu, Guanglong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 592 : 210 - 227
  • [23] Domination number and Laplacian eigenvalue of trees
    Xue J.
    Liu R.
    Yu G.
    Shu J.
    Linear Algebra and Its Applications, 2020, 592 : 210 - 227
  • [24] Domination number and Laplacian eigenvalue distribution
    Hedetniemi, Stephen T.
    Jacobs, David P.
    Trevisan, Vilmar
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 53 : 66 - 71
  • [25] Laplacian and signless Laplacian spectral radii of graphs with fixed domination number
    Xing, Rundan
    Zhou, Bo
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (04) : 476 - 480
  • [26] Sharp upper bound for the first eigenvalue
    Binoy, Raveendran
    Santhanam, G.
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 397 - 410
  • [27] The domination number and the least Q-eigenvalue
    Yu, Guanglong
    Guo, Shu-Guang
    Zhang, Rong
    Wu, Yarong
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 274 - 282
  • [28] Sharp upper bound for the first eigenvalue
    Raveendran Binoy
    G. Santhanam
    Geometriae Dedicata, 2014, 169 : 397 - 410
  • [29] The least eigenvalue of a graph with a given domination number
    Zhu, Bao-Xuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (11) : 2713 - 2718
  • [30] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    arXiv, 2022,