A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number

被引:1
|
作者
He, Chang-Xiang [1 ]
Zhou, Min [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Graph spectra; Signless Laplacian; Least eigenvalue;
D O I
10.1007/s00373-013-1330-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a sharp upper bound for the least signless Laplacian eigenvalue of a graph involving its domination number. Moreover, we determine some extremal graphs which attain the sharp bound.
引用
收藏
页码:1183 / 1192
页数:10
相关论文
共 50 条
  • [31] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (04): : 763 - 775
  • [32] Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph
    Maden, A. Dilek
    Das, Kinkar Ch.
    Cevik, A. Sinan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5025 - 5032
  • [33] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    Xian-zhang Wu
    Jian-ping Liu
    Applied Mathematics-A Journal of Chinese Universities, 2019, 34 : 100 - 112
  • [34] Sharp bounds for the signless Laplacian spectral radius in terms of clique number
    He, Bian
    Jin, Ya-Lei
    Zhang, Xiao-Dong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3851 - 3861
  • [35] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    WU Xian-zhang
    LIU Jian-ping
    Applied Mathematics:A Journal of Chinese Universities, 2019, 34 (01) : 100 - 112
  • [36] TWO SHARP UPPER BOUNDS FOR THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Chen, Ya-Hong
    Pan, Rong-Ying
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (02) : 185 - 191
  • [37] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    Wu Xian-zhang
    Liu Jian-ping
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2019, 34 (01) : 100 - 112
  • [38] The least Q-eigenvalue with fixed domination number
    Yu, Guanglong
    Zhai, Mingqing
    Yan, Chao
    Guo, Shu-guang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 477 - 487
  • [39] Erratum to: Sharp upper bound for the first eigenvalue
    Raveendran Binoy
    G. Santhanam
    Geometriae Dedicata, 2015, 174 : 409 - 411
  • [40] The Sharp Lower Bound of the Least Eigenvalue of a Bicyclic Graph
    Guo, Shu-Guang
    ARS COMBINATORIA, 2010, 95 : 427 - 436